1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155
|
/* Double-precision 2^x function.
Copyright (C) 2018-2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <math.h>
#include <stdint.h>
#include <math-barriers.h>
#include <math-narrow-eval.h>
#include <math-svid-compat.h>
#include <libm-alias-finite.h>
#include <libm-alias-double.h>
#include "math_config.h"
#define N (1 << EXP_TABLE_BITS)
#define Shift __exp_data.exp2_shift
#define T __exp_data.tab
#define C1 __exp_data.exp2_poly[0]
#define C2 __exp_data.exp2_poly[1]
#define C3 __exp_data.exp2_poly[2]
#define C4 __exp_data.exp2_poly[3]
#define C5 __exp_data.exp2_poly[4]
/* Handle cases that may overflow or underflow when computing the result that
is scale*(1+TMP) without intermediate rounding. The bit representation of
scale is in SBITS, however it has a computed exponent that may have
overflown into the sign bit so that needs to be adjusted before using it as
a double. (int32_t)KI is the k used in the argument reduction and exponent
adjustment of scale, positive k here means the result may overflow and
negative k means the result may underflow. */
static inline double
specialcase (double_t tmp, uint64_t sbits, uint64_t ki)
{
double_t scale, y;
if ((ki & 0x80000000) == 0)
{
/* k > 0, the exponent of scale might have overflowed by 1. */
sbits -= 1ull << 52;
scale = asdouble (sbits);
y = 2 * (scale + scale * tmp);
return check_oflow (y);
}
/* k < 0, need special care in the subnormal range. */
sbits += 1022ull << 52;
scale = asdouble (sbits);
y = scale + scale * tmp;
if (y < 1.0)
{
/* Round y to the right precision before scaling it into the subnormal
range to avoid double rounding that can cause 0.5+E/2 ulp error where
E is the worst-case ulp error outside the subnormal range. So this
is only useful if the goal is better than 1 ulp worst-case error. */
double_t hi, lo;
lo = scale - y + scale * tmp;
hi = 1.0 + y;
lo = 1.0 - hi + y + lo;
y = math_narrow_eval (hi + lo) - 1.0;
/* Avoid -0.0 with downward rounding. */
if (WANT_ROUNDING && y == 0.0)
y = 0.0;
/* The underflow exception needs to be signaled explicitly. */
math_force_eval (math_opt_barrier (0x1p-1022) * 0x1p-1022);
}
y = 0x1p-1022 * y;
return check_uflow (y);
}
/* Top 12 bits of a double (sign and exponent bits). */
static inline uint32_t
top12 (double x)
{
return asuint64 (x) >> 52;
}
double
__exp2 (double x)
{
uint32_t abstop;
uint64_t ki, idx, top, sbits;
/* double_t for better performance on targets with FLT_EVAL_METHOD==2. */
double_t kd, r, r2, scale, tail, tmp;
abstop = top12 (x) & 0x7ff;
if (__glibc_unlikely (abstop - top12 (0x1p-54)
>= top12 (512.0) - top12 (0x1p-54)))
{
if (abstop - top12 (0x1p-54) >= 0x80000000)
/* Avoid spurious underflow for tiny x. */
/* Note: 0 is common input. */
return WANT_ROUNDING ? 1.0 + x : 1.0;
if (abstop >= top12 (1024.0))
{
if (asuint64 (x) == asuint64 (-INFINITY))
return 0.0;
if (abstop >= top12 (INFINITY))
return 1.0 + x;
if (!(asuint64 (x) >> 63))
return __math_oflow (0);
else if (asuint64 (x) >= asuint64 (-1075.0))
return __math_uflow (0);
}
if (2 * asuint64 (x) > 2 * asuint64 (928.0))
/* Large x is special cased below. */
abstop = 0;
}
/* exp2(x) = 2^(k/N) * 2^r, with 2^r in [2^(-1/2N),2^(1/2N)]. */
/* x = k/N + r, with int k and r in [-1/2N, 1/2N]. */
kd = math_narrow_eval (x + Shift);
ki = asuint64 (kd); /* k. */
kd -= Shift; /* k/N for int k. */
r = x - kd;
/* 2^(k/N) ~= scale * (1 + tail). */
idx = 2 * (ki % N);
top = ki << (52 - EXP_TABLE_BITS);
tail = asdouble (T[idx]);
/* This is only a valid scale when -1023*N < k < 1024*N. */
sbits = T[idx + 1] + top;
/* exp2(x) = 2^(k/N) * 2^r ~= scale + scale * (tail + 2^r - 1). */
/* Evaluation is optimized assuming superscalar pipelined execution. */
r2 = r * r;
/* Without fma the worst case error is 0.5/N ulp larger. */
/* Worst case error is less than 0.5+0.86/N+(abs poly error * 2^53) ulp. */
tmp = tail + r * C1 + r2 * (C2 + r * C3) + r2 * r2 * (C4 + r * C5);
if (__glibc_unlikely (abstop == 0))
return specialcase (tmp, sbits, ki);
scale = asdouble (sbits);
/* Note: tmp == 0 or |tmp| > 2^-65 and scale > 2^-928, so there
is no spurious underflow here even without fma. */
return scale + scale * tmp;
}
#ifndef __exp2
strong_alias (__exp2, __ieee754_exp2)
libm_alias_finite (__ieee754_exp2, __exp2)
# if LIBM_SVID_COMPAT
versioned_symbol (libm, __exp2, exp2, GLIBC_2_29);
libm_alias_double_other (__exp2, exp2)
# else
libm_alias_double (__exp2, exp2)
# endif
#endif
|