1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149
|
/* e_fmodl.c -- long double version of e_fmod.c.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
* __ieee754_fmodl(x,y)
* Return x mod y in exact arithmetic
* Method: shift and subtract
*/
#include <math.h>
#include <math_private.h>
#include <ieee754.h>
#include <libm-alias-finite.h>
static const long double one = 1.0, Zero[] = {0.0, -0.0,};
long double
__ieee754_fmodl (long double x, long double y)
{
int64_t hx, hy, hz, sx, sy;
uint64_t lx, ly, lz;
int n, ix, iy;
double xhi, xlo, yhi, ylo;
ldbl_unpack (x, &xhi, &xlo);
EXTRACT_WORDS64 (hx, xhi);
EXTRACT_WORDS64 (lx, xlo);
ldbl_unpack (y, &yhi, &ylo);
EXTRACT_WORDS64 (hy, yhi);
EXTRACT_WORDS64 (ly, ylo);
sx = hx&0x8000000000000000ULL; /* sign of x */
hx ^= sx; /* |x| */
sy = hy&0x8000000000000000ULL; /* sign of y */
hy ^= sy; /* |y| */
/* purge off exception values */
if(__builtin_expect(hy==0 ||
(hx>=0x7ff0000000000000LL)|| /* y=0,or x not finite */
(hy>0x7ff0000000000000LL),0)) /* or y is NaN */
return (x*y)/(x*y);
if (__glibc_unlikely (hx <= hy))
{
/* If |x| < |y| return x. */
if (hx < hy)
return x;
/* At this point the absolute value of the high doubles of
x and y must be equal. */
if ((lx & 0x7fffffffffffffffLL) == 0
&& (ly & 0x7fffffffffffffffLL) == 0)
/* Both low parts are zero. The result should be an
appropriately signed zero, but the subsequent logic
could treat them as unequal, depending on the signs
of the low parts. */
return Zero[(uint64_t) sx >> 63];
/* If the low double of y is the same sign as the high
double of y (ie. the low double increases |y|)... */
if (((ly ^ sy) & 0x8000000000000000LL) == 0
/* ... then a different sign low double to high double
for x or same sign but lower magnitude... */
&& (int64_t) (lx ^ sx) < (int64_t) (ly ^ sy))
/* ... means |x| < |y|. */
return x;
/* If the low double of x differs in sign to the high
double of x (ie. the low double decreases |x|)... */
if (((lx ^ sx) & 0x8000000000000000LL) != 0
/* ... then a different sign low double to high double
for y with lower magnitude (we've already caught
the same sign for y case above)... */
&& (int64_t) (lx ^ sx) > (int64_t) (ly ^ sy))
/* ... means |x| < |y|. */
return x;
/* If |x| == |y| return x*0. */
if ((lx ^ sx) == (ly ^ sy))
return Zero[(uint64_t) sx >> 63];
}
/* Make the IBM extended format 105 bit mantissa look like the ieee854 112
bit mantissa so the following operations will give the correct
result. */
ldbl_extract_mantissa(&hx, &lx, &ix, x);
ldbl_extract_mantissa(&hy, &ly, &iy, y);
if (__glibc_unlikely (ix == -IEEE754_DOUBLE_BIAS))
{
/* subnormal x, shift x to normal. */
while ((hx & (1LL << 48)) == 0)
{
hx = (hx << 1) | (lx >> 63);
lx = lx << 1;
ix -= 1;
}
}
if (__glibc_unlikely (iy == -IEEE754_DOUBLE_BIAS))
{
/* subnormal y, shift y to normal. */
while ((hy & (1LL << 48)) == 0)
{
hy = (hy << 1) | (ly >> 63);
ly = ly << 1;
iy -= 1;
}
}
/* fix point fmod */
n = ix - iy;
while(n--) {
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
if(hz<0){hx = hx+hx+(lx>>63); lx = lx+lx;}
else {
if((hz|lz)==0) /* return sign(x)*0 */
return Zero[(uint64_t)sx>>63];
hx = hz+hz+(lz>>63); lx = lz+lz;
}
}
hz=hx-hy;lz=lx-ly; if(lx<ly) hz -= 1;
if(hz>=0) {hx=hz;lx=lz;}
/* convert back to floating value and restore the sign */
if((hx|lx)==0) /* return sign(x)*0 */
return Zero[(uint64_t)sx>>63];
while(hx<0x0001000000000000LL) { /* normalize x */
hx = hx+hx+(lx>>63); lx = lx+lx;
iy -= 1;
}
if(__builtin_expect(iy>= -1022,0)) { /* normalize output */
x = ldbl_insert_mantissa((sx>>63), iy, hx, lx);
} else { /* subnormal output */
n = -1022 - iy;
/* We know 1 <= N <= 52, and that there are no nonzero
bits in places below 2^-1074. */
lx = (lx >> n) | ((uint64_t) hx << (64 - n));
hx >>= n;
x = ldbl_insert_mantissa((sx>>63), -1023, hx, lx);
x *= one; /* create necessary signal */
}
return x; /* exact output */
}
libm_alias_finite (__ieee754_fmodl, __fmodl)
|