1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
|
/* s_frexpl.c -- long double version of s_frexp.c.
*/
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: $";
#endif
/*
* for non-zero x
* x = frexpl(arg,&exp);
* return a long double fp quantity x such that 0.5 <= |x| <1.0
* and the corresponding binary exponent "exp". That is
* arg = x*2^exp.
* If arg is inf, 0.0, or NaN, then frexpl(arg,&exp) returns arg
* with *exp=0.
*/
#include <math.h>
#include <math_private.h>
#include <math_ldbl_opt.h>
long double __frexpl(long double x, int *eptr)
{
uint64_t hx, lx, ix, ixl;
int64_t explo, expon;
double xhi, xlo;
ldbl_unpack (x, &xhi, &xlo);
EXTRACT_WORDS64 (hx, xhi);
EXTRACT_WORDS64 (lx, xlo);
ixl = 0x7fffffffffffffffULL & lx;
ix = 0x7fffffffffffffffULL & hx;
expon = 0;
if (ix >= 0x7ff0000000000000ULL || ix == 0)
{
/* 0,inf,nan. */
*eptr = expon;
return x + x;
}
expon = ix >> 52;
if (expon == 0)
{
/* Denormal high double, the low double must be 0.0. */
int cnt;
/* Normalize. */
if (sizeof (ix) == sizeof (long))
cnt = __builtin_clzl (ix);
else if ((ix >> 32) != 0)
cnt = __builtin_clzl ((long) (ix >> 32));
else
cnt = __builtin_clzl ((long) ix) + 32;
cnt = cnt - 12;
expon -= cnt;
ix <<= cnt + 1;
}
expon -= 1022;
ix &= 0x000fffffffffffffULL;
hx &= 0x8000000000000000ULL;
hx |= (1022LL << 52) | ix;
if (ixl != 0)
{
/* If the high double is an exact power of two and the low
double has the opposite sign, then the exponent calculated
from the high double is one too big. */
if (ix == 0
&& (int64_t) (hx ^ lx) < 0)
{
hx += 1LL << 52;
expon -= 1;
}
explo = ixl >> 52;
if (explo == 0)
{
/* The low double started out as a denormal. Normalize its
mantissa and adjust the exponent. */
int cnt;
if (sizeof (ixl) == sizeof (long))
cnt = __builtin_clzl (ixl);
else if ((ixl >> 32) != 0)
cnt = __builtin_clzl ((long) (ixl >> 32));
else
cnt = __builtin_clzl ((long) ixl) + 32;
cnt = cnt - 12;
explo -= cnt;
ixl <<= cnt + 1;
}
/* With variable precision we can't assume much about the
magnitude of the returned low double. It may even be a
denormal. */
explo -= expon;
ixl &= 0x000fffffffffffffULL;
lx &= 0x8000000000000000ULL;
if (explo <= 0)
{
/* Handle denormal low double. */
if (explo > -52)
{
ixl |= 1LL << 52;
ixl >>= 1 - explo;
}
else
{
ixl = 0;
lx = 0;
if ((hx & 0x7ff0000000000000ULL) == (1023LL << 52))
{
/* Oops, the adjustment we made above for values a
little smaller than powers of two turned out to
be wrong since the returned low double will be
zero. This can happen if the input was
something weird like 0x1p1000 - 0x1p-1000. */
hx -= 1LL << 52;
expon += 1;
}
}
explo = 0;
}
lx |= (explo << 52) | ixl;
}
INSERT_WORDS64 (xhi, hx);
INSERT_WORDS64 (xlo, lx);
x = ldbl_pack (xhi, xlo);
*eptr = expon;
return x;
}
#if IS_IN (libm)
long_double_symbol (libm, __frexpl, frexpl);
#else
long_double_symbol (libc, __frexpl, frexpl);
#endif
|