1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
/*
* ====================================================
* Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
*
* Developed at SunPro, a Sun Microsystems, Inc. business.
* Permission to use, copy, modify, and distribute this
* software is freely granted, provided that this notice
* is preserved.
* ====================================================
*/
/*
Long double expansions are
Copyright (C) 2001 Stephen L. Moshier <moshier@na-net.ornl.gov>
and are incorporated herein by permission of the author. The author
reserves the right to distribute this material elsewhere under different
copying permissions. These modifications are distributed here under
the following terms:
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with this library; if not, see
<https://www.gnu.org/licenses/>. */
/* __ieee754_asin(x)
* Method :
* Since asin(x) = x + x^3/6 + x^5*3/40 + x^7*15/336 + ...
* we approximate asin(x) on [0,0.5] by
* asin(x) = x + x*x^2*R(x^2)
*
* For x in [0.5,1]
* asin(x) = pi/2-2*asin(sqrt((1-x)/2))
* Let y = (1-x), z = y/2, s := sqrt(z), and pio2_hi+pio2_lo=pi/2;
* then for x>0.98
* asin(x) = pi/2 - 2*(s+s*z*R(z))
* = pio2_hi - (2*(s+s*z*R(z)) - pio2_lo)
* For x<=0.98, let pio4_hi = pio2_hi/2, then
* f = hi part of s;
* c = sqrt(z) - f = (z-f*f)/(s+f) ...f+c=sqrt(z)
* and
* asin(x) = pi/2 - 2*(s+s*z*R(z))
* = pio4_hi+(pio4-2s)-(2s*z*R(z)-pio2_lo)
* = pio4_hi+(pio4-2f)-(2s*z*R(z)-(pio2_lo+2c))
*
* Special cases:
* if x is NaN, return x itself;
* if |x|>1, return NaN with invalid signal.
*
*/
#include <float.h>
#include <math.h>
#include <math_private.h>
#include <math-underflow.h>
#include <libm-alias-finite.h>
static const long double
one = 1.0L,
huge = 1.0e+4932L,
pio2_hi = 0x1.921fb54442d1846ap+0L, /* pi/2 rounded to nearest to 64
bits. */
pio2_lo = -0x7.6733ae8fe47c65d8p-68L, /* pi/2 - pio2_hi rounded to
nearest to 64 bits. */
pio4_hi = 0xc.90fdaa22168c235p-4L, /* pi/4 rounded to nearest to 64
bits. */
/* coefficient for R(x^2) */
/* asin(x) = x + x^3 pS(x^2) / qS(x^2)
0 <= x <= 0.5
peak relative error 1.9e-21 */
pS0 = -1.008714657938491626019651170502036851607E1L,
pS1 = 2.331460313214179572063441834101394865259E1L,
pS2 = -1.863169762159016144159202387315381830227E1L,
pS3 = 5.930399351579141771077475766877674661747E0L,
pS4 = -6.121291917696920296944056882932695185001E-1L,
pS5 = 3.776934006243367487161248678019350338383E-3L,
qS0 = -6.052287947630949712886794360635592886517E1L,
qS1 = 1.671229145571899593737596543114258558503E2L,
qS2 = -1.707840117062586426144397688315411324388E2L,
qS3 = 7.870295154902110425886636075950077640623E1L,
qS4 = -1.568433562487314651121702982333303458814E1L;
/* 1.000000000000000000000000000000000000000E0 */
long double
__ieee754_asinl (long double x)
{
long double t, w, p, q, c, r, s;
int32_t ix;
uint32_t se, i0, i1, k;
GET_LDOUBLE_WORDS (se, i0, i1, x);
ix = se & 0x7fff;
ix = (ix << 16) | (i0 >> 16);
if (ix >= 0x3fff8000)
{ /* |x|>= 1 */
if (ix == 0x3fff8000 && ((i0 - 0x80000000) | i1) == 0)
/* asin(1)=+-pi/2 with inexact */
return x * pio2_hi + x * pio2_lo;
return (x - x) / (x - x); /* asin(|x|>1) is NaN */
}
else if (ix < 0x3ffe8000)
{ /* |x|<0.5 */
if (ix < 0x3fde8000)
{ /* if |x| < 2**-33 */
math_check_force_underflow (x);
if (huge + x > one)
return x; /* return x with inexact if x!=0 */
}
else
{
t = x * x;
p =
t * (pS0 +
t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
q = qS0 + t * (qS1 + t * (qS2 + t * (qS3 + t * (qS4 + t))));
w = p / q;
return x + x * w;
}
}
/* 1> |x|>= 0.5 */
w = one - fabsl (x);
t = w * 0.5;
p = t * (pS0 + t * (pS1 + t * (pS2 + t * (pS3 + t * (pS4 + t * pS5)))));
q = qS0 + t * (qS1 + t * (qS2 + t * (qS3 + t * (qS4 + t))));
s = sqrtl (t);
if (ix >= 0x3ffef999)
{ /* if |x| > 0.975 */
w = p / q;
t = pio2_hi - (2.0 * (s + s * w) - pio2_lo);
}
else
{
GET_LDOUBLE_WORDS (k, i0, i1, s);
i1 = 0;
SET_LDOUBLE_WORDS (w,k,i0,i1);
c = (t - w * w) / (s + w);
r = p / q;
p = 2.0 * s * r - (pio2_lo - 2.0 * c);
q = pio4_hi - 2.0 * w;
t = pio4_hi - (p - q);
}
if ((se & 0x8000) == 0)
return t;
else
return -t;
}
libm_alias_finite (__ieee754_asinl, __asinl)
|