1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91
  
     | 
    
      /* Double-precision vector (SVE) cos function.
   Copyright (C) 2023-2025 Free Software Foundation, Inc.
   This file is part of the GNU C Library.
   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.
   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.
   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */
#include "sv_math.h"
static const struct data
{
  double inv_pio2, pio2_1, pio2_2, pio2_3, shift;
} data = {
  /* Polynomial coefficients are hardwired in FTMAD instructions.  */
  .inv_pio2 = 0x1.45f306dc9c882p-1,
  .pio2_1 = 0x1.921fb50000000p+0,
  .pio2_2 = 0x1.110b460000000p-26,
  .pio2_3 = 0x1.1a62633145c07p-54,
  /* Original shift used in AdvSIMD cos,
     plus a contribution to set the bit #0 of q
     as expected by trigonometric instructions.  */
  .shift = 0x1.8000000000001p52
};
#define RangeVal 0x4160000000000000 /* asuint64 (0x1p23).  */
static svfloat64_t NOINLINE
special_case (svfloat64_t x, svfloat64_t y, svbool_t oob)
{
  return sv_call_f64 (cos, x, y, oob);
}
/* A fast SVE implementation of cos based on trigonometric
   instructions (FTMAD, FTSSEL, FTSMUL).
   Maximum measured error: 2.108 ULPs.
   SV_NAME_D1 (cos)(0x1.9b0ba158c98f3p+7) got -0x1.fddd4c65c7f07p-3
					 want -0x1.fddd4c65c7f05p-3.  */
svfloat64_t SV_NAME_D1 (cos) (svfloat64_t x, const svbool_t pg)
{
  const struct data *d = ptr_barrier (&data);
  svfloat64_t r = svabs_x (pg, x);
  svbool_t oob = svcmpge (pg, svreinterpret_u64 (r), RangeVal);
  /* Load some constants in quad-word chunks to minimise memory access.  */
  svbool_t ptrue = svptrue_b64 ();
  svfloat64_t invpio2_and_pio2_1 = svld1rq (ptrue, &d->inv_pio2);
  svfloat64_t pio2_23 = svld1rq (ptrue, &d->pio2_2);
  /* n = rint(|x|/(pi/2)).  */
  svfloat64_t q = svmla_lane (sv_f64 (d->shift), r, invpio2_and_pio2_1, 0);
  svfloat64_t n = svsub_x (pg, q, d->shift);
  /* r = |x| - n*(pi/2)  (range reduction into -pi/4 .. pi/4).  */
  r = svmls_lane (r, n, invpio2_and_pio2_1, 1);
  r = svmls_lane (r, n, pio2_23, 0);
  r = svmls_lane (r, n, pio2_23, 1);
  /* cos(r) poly approx.  */
  svfloat64_t r2 = svtsmul (r, svreinterpret_u64 (q));
  svfloat64_t y = sv_f64 (0.0);
  y = svtmad (y, r2, 7);
  y = svtmad (y, r2, 6);
  y = svtmad (y, r2, 5);
  y = svtmad (y, r2, 4);
  y = svtmad (y, r2, 3);
  y = svtmad (y, r2, 2);
  y = svtmad (y, r2, 1);
  y = svtmad (y, r2, 0);
  /* Final multiplicative factor: 1.0 or x depending on bit #0 of q.  */
  svfloat64_t f = svtssel (r, svreinterpret_u64 (q));
  if (__glibc_unlikely (svptest_any (pg, oob)))
    return special_case (x, svmul_x (svnot_z (pg, oob), y, f), oob);
  /* Apply factor.  */
  return svmul_x (pg, f, y);
}
 
     |