File: sinpif_sve.c

package info (click to toggle)
glibc 2.41-11
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie, trixie-updates
  • size: 300,376 kB
  • sloc: ansic: 1,050,583; asm: 238,243; makefile: 20,379; python: 13,537; sh: 11,827; cpp: 5,197; awk: 1,795; perl: 317; yacc: 292; pascal: 182; sed: 19
file content (57 lines) | stat: -rw-r--r-- 1,985 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
/* Single-precision (SVE) sinpi function

   Copyright (C) 2024 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */

#include "sv_math.h"
#include "poly_sve_f32.h"

static const struct data
{
  float poly[6], range_val;
} data = {
  /* Taylor series coefficents for sin(pi * x).  */
  .poly = { 0x1.921fb6p1f, -0x1.4abbcep2f, 0x1.466bc6p1f, -0x1.32d2ccp-1f,
	    0x1.50783p-4f, -0x1.e30750p-8f },
  .range_val = 0x1p31,
};

/* A fast SVE implementation of sinpif.
   Maximum error 2.48 ULP:
   _ZGVsMxv_sinpif(0x1.d062b6p-2) got 0x1.fa8c06p-1
				 want 0x1.fa8c02p-1.  */
svfloat32_t SV_NAME_F1 (sinpi) (svfloat32_t x, const svbool_t pg)
{
  const struct data *d = ptr_barrier (&data);

  /* range reduction into -1/2 .. 1/2
     with n = rint(x) and r = r - n.  */
  svfloat32_t n = svrinta_x (pg, x);
  svfloat32_t r = svsub_x (pg, x, n);

  /* Result should be negated based on if n is odd or not.  */
  svbool_t cmp = svaclt (pg, x, d->range_val);
  svuint32_t intn = svreinterpret_u32 (svcvt_s32_z (pg, n));
  svuint32_t sign = svlsl_z (cmp, intn, 31);

  /* y = sin(r).  */
  svfloat32_t r2 = svmul_x (pg, r, r);
  svfloat32_t y = sv_horner_5_f32_x (pg, r2, d->poly);
  y = svmul_x (pg, y, r);

  return svreinterpret_f32 (sveor_x (pg, svreinterpret_u32 (y), sign));
}