File: tanpif_sve.c

package info (click to toggle)
glibc 2.41-11
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 300,376 kB
  • sloc: ansic: 1,050,583; asm: 238,243; makefile: 20,379; python: 13,537; sh: 11,827; cpp: 5,197; awk: 1,795; perl: 317; yacc: 292; pascal: 182; sed: 19
file content (68 lines) | stat: -rw-r--r-- 2,606 bytes parent folder | download | duplicates (4)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
/* Single-precision (SVE) tanpi function

   Copyright (C) 2024 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */

#include "sv_math.h"

const static struct v_tanpif_data
{
  float c0, c2, c4, c6;
  float c1, c3, c5, c7;
} tanpif_data = {
  /* Coefficients for tan(pi * x).  */
  .c0 = 0x1.921fb4p1f,	.c1 = 0x1.4abbcep3f,  .c2 = 0x1.466b8p5f,
  .c3 = 0x1.461c72p7f,	.c4 = 0x1.42e9d4p9f,  .c5 = 0x1.69e2c4p11f,
  .c6 = 0x1.e85558p11f, .c7 = 0x1.a52e08p16f,
};

/* Approximation for single-precision vector tanpif(x)
   The maximum error is 3.34 ULP:
   _ZGVsMxv_tanpif(0x1.d6c09ap-2) got 0x1.f70aacp+2
				 want 0x1.f70aa6p+2.  */
svfloat32_t SV_NAME_F1 (tanpi) (svfloat32_t x, const svbool_t pg)
{
  const struct v_tanpif_data *d = ptr_barrier (&tanpif_data);
  svfloat32_t odd_coeffs = svld1rq (pg, &d->c1);
  svfloat32_t n = svrintn_x (pg, x);

  /* inf produces nan that propagates.  */
  svfloat32_t xr = svsub_x (pg, x, n);
  svfloat32_t ar = svabd_x (pg, x, n);
  svbool_t flip = svcmpgt (pg, ar, 0.25f);
  svfloat32_t r = svsel (flip, svsub_x (pg, sv_f32 (0.5f), ar), ar);

  svfloat32_t r2 = svmul_x (pg, r, r);
  svfloat32_t r4 = svmul_x (pg, r2, r2);

  /* Order-7 Pairwise Horner.  */
  svfloat32_t p01 = svmla_lane (sv_f32 (d->c0), r2, odd_coeffs, 0);
  svfloat32_t p23 = svmla_lane (sv_f32 (d->c2), r2, odd_coeffs, 1);
  svfloat32_t p45 = svmla_lane (sv_f32 (d->c4), r2, odd_coeffs, 2);
  svfloat32_t p67 = svmla_lane (sv_f32 (d->c6), r2, odd_coeffs, 3);
  svfloat32_t p = svmad_x (pg, p67, r4, p45);
  p = svmad_x (pg, p, r4, p23);
  p = svmad_x (pg, p, r4, p01);
  svfloat32_t poly = svmul_x (pg, r, p);

  svfloat32_t poly_recip = svdiv_x (pg, sv_f32 (1.0), poly);
  svfloat32_t y = svsel (flip, poly_recip, poly);

  svuint32_t sign
      = sveor_x (pg, svreinterpret_u32 (xr), svreinterpret_u32 (ar));
  return svreinterpret_f32 (svorr_x (pg, svreinterpret_u32 (y), sign));
}