1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
  
     | 
    
      /* Single-precision inline helper for vector (Advanced SIMD) expm1 function
   Copyright (C) 2024-2025 Free Software Foundation, Inc.
   This file is part of the GNU C Library.
   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.
   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.
   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */
#ifndef AARCH64_FPU_V_EXPM1F_INLINE_H
#define AARCH64_FPU_V_EXPM1F_INLINE_H
#include "v_math.h"
struct v_expm1f_data
{
  float32x4_t c0, c2;
  int32x4_t exponent_bias;
  float c1, c3, inv_ln2, c4;
  float ln2_hi, ln2_lo;
};
/* Coefficients generated using fpminimax with degree=5 in [-log(2)/2,
   log(2)/2]. Exponent bias is asuint(1.0f).  */
#define V_EXPM1F_DATA                                                         \
  {                                                                           \
    .c0 = V4 (0x1.fffffep-2), .c1 = 0x1.5554aep-3, .c2 = V4 (0x1.555736p-5),  \
    .c3 = 0x1.12287cp-7, .c4 = 0x1.6b55a2p-10,                                \
    .exponent_bias = V4 (0x3f800000), .inv_ln2 = 0x1.715476p+0f,              \
    .ln2_hi = 0x1.62e4p-1f, .ln2_lo = 0x1.7f7d1cp-20f,                        \
  }
static inline float32x4_t
expm1f_inline (float32x4_t x, const struct v_expm1f_data *d)
{
  /* Helper routine for calculating exp(x) - 1.  */
  float32x2_t ln2 = vld1_f32 (&d->ln2_hi);
  float32x4_t lane_consts = vld1q_f32 (&d->c1);
  /* Reduce argument: f in [-ln2/2, ln2/2], i is exact.  */
  float32x4_t j = vrndaq_f32 (vmulq_laneq_f32 (x, lane_consts, 2));
  int32x4_t i = vcvtq_s32_f32 (j);
  float32x4_t f = vfmsq_lane_f32 (x, j, ln2, 0);
  f = vfmsq_lane_f32 (f, j, ln2, 1);
  /* Approximate expm1(f) with polynomial P, expm1(f) ~= f + f^2 * P(f).  */
  float32x4_t f2 = vmulq_f32 (f, f);
  float32x4_t f4 = vmulq_f32 (f2, f2);
  float32x4_t p01 = vfmaq_laneq_f32 (d->c0, f, lane_consts, 0);
  float32x4_t p23 = vfmaq_laneq_f32 (d->c2, f, lane_consts, 1);
  float32x4_t p = vfmaq_f32 (p01, f2, p23);
  p = vfmaq_laneq_f32 (p, f4, lane_consts, 3);
  p = vfmaq_f32 (f, f2, p);
  /* t = 2^i.  */
  int32x4_t u = vaddq_s32 (vshlq_n_s32 (i, 23), d->exponent_bias);
  float32x4_t t = vreinterpretq_f32_s32 (u);
  /* expm1(x) ~= p * t + (t - 1).  */
  return vfmaq_f32 (vsubq_f32 (t, v_f32 (1.0f)), p, t);
}
#endif
 
     |