1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181
|
/* Floating-point remainder function.
Copyright (C) 2023-2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <libm-alias-finite.h>
#include <libm-alias-float.h>
#include <math-svid-compat.h>
#include <math.h>
#include "math_config.h"
/* With x = mx * 2^ex and y = my * 2^ey (mx, my, ex, ey being integers), the
simplest implementation is:
mx * 2^ex == 2 * mx * 2^(ex - 1)
or
while (ex > ey)
{
mx *= 2;
--ex;
mx %= my;
}
With the mathematical equivalence of:
r == x % y == (x % (N * y)) % y
And with mx/my being mantissa of a single floating point number (which uses
less bits than the storage type), on each step the argument reduction can
be improved by 8 (which is the size of uint32_t minus MANTISSA_WIDTH plus
the implicit one bit):
mx * 2^ex == 2^8 * mx * 2^(ex - 8)
or
while (ex > ey)
{
mx << 8;
ex -= 8;
mx %= my;
}
Special cases:
- If x or y is a NaN, a NaN is returned.
- If x is an infinity, or y is zero, a NaN is returned and EDOM is set.
- If x is +0/-0, and y is not zero, +0/-0 is returned. */
float
__fmodf (float x, float y)
{
uint32_t hx = asuint (x);
uint32_t hy = asuint (y);
uint32_t sx = hx & SIGN_MASK;
/* Get |x| and |y|. */
hx ^= sx;
hy &= ~SIGN_MASK;
if (__glibc_likely (hx < hy))
{
/* If y is a NaN, return a NaN. */
if (__glibc_unlikely (hy > EXPONENT_MASK))
return x * y;
return x;
}
int ex = hx >> MANTISSA_WIDTH;
int ey = hy >> MANTISSA_WIDTH;
int exp_diff = ex - ey;
/* Common case where exponents are close: |x/y| < 2^9, x not inf/NaN
and |x%y| not denormal. */
if (__glibc_likely (ey < (EXPONENT_MASK >> MANTISSA_WIDTH) - EXPONENT_WIDTH
&& ey > MANTISSA_WIDTH
&& exp_diff <= EXPONENT_WIDTH))
{
uint32_t mx = (hx << EXPONENT_WIDTH) | SIGN_MASK;
uint32_t my = (hy << EXPONENT_WIDTH) | SIGN_MASK;
mx %= (my >> exp_diff);
if (__glibc_unlikely (mx == 0))
return asfloat (sx);
int shift = __builtin_clz (mx);
ex -= shift + 1;
mx <<= shift;
mx = sx | (mx >> EXPONENT_WIDTH);
return asfloat (mx + ((uint32_t)ex << MANTISSA_WIDTH));
}
if (__glibc_unlikely (hy == 0 || hx >= EXPONENT_MASK))
{
/* If x is a NaN, return a NaN. */
if (hx > EXPONENT_MASK)
return x * y;
/* If x is an infinity or y is zero, return a NaN and set EDOM. */
return __math_edomf ((x * y) / (x * y));
}
/* Special case, both x and y are denormal. */
if (__glibc_unlikely (ex == 0))
return asfloat (sx | hx % hy);
/* Extract normalized mantissas - hx is not denormal and hy != 0. */
uint32_t mx = get_mantissa (hx) | (MANTISSA_MASK + 1);
uint32_t my = get_mantissa (hy) | (MANTISSA_MASK + 1);
int lead_zeros_my = EXPONENT_WIDTH;
ey--;
/* Special case for denormal y. */
if (__glibc_unlikely (ey < 0))
{
my = hy;
ey = 0;
exp_diff--;
lead_zeros_my = __builtin_clz (my);
}
int tail_zeros_my = __builtin_ctz (my);
int sides_zeroes = lead_zeros_my + tail_zeros_my;
int right_shift = exp_diff < tail_zeros_my ? exp_diff : tail_zeros_my;
my >>= right_shift;
exp_diff -= right_shift;
ey += right_shift;
int left_shift = exp_diff < EXPONENT_WIDTH ? exp_diff : EXPONENT_WIDTH;
mx <<= left_shift;
exp_diff -= left_shift;
mx %= my;
if (__glibc_unlikely (mx == 0))
return asfloat (sx);
if (exp_diff == 0)
return make_float (mx, ey, sx);
/* Multiplication with the inverse is faster than repeated modulo. */
uint32_t inv_hy = UINT32_MAX / my;
while (exp_diff > sides_zeroes) {
exp_diff -= sides_zeroes;
uint32_t hd = (mx * inv_hy) >> (BIT_WIDTH - sides_zeroes);
mx <<= sides_zeroes;
mx -= hd * my;
while (__glibc_unlikely (mx > my))
mx -= my;
}
uint32_t hd = (mx * inv_hy) >> (BIT_WIDTH - exp_diff);
mx <<= exp_diff;
mx -= hd * my;
while (__glibc_unlikely (mx > my))
mx -= my;
return make_float (mx, ey, sx);
}
strong_alias (__fmodf, __ieee754_fmodf)
#if LIBM_SVID_COMPAT
versioned_symbol (libm, __fmodf, fmodf, GLIBC_2_38);
libm_alias_float_other (__fmod, fmod)
#else
libm_alias_float (__fmod, fmod)
#endif
libm_alias_finite (__ieee754_fmodf, __fmodf)
|