File: asinh_sve.c

package info (click to toggle)
glibc 2.41-12
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 300,384 kB
  • sloc: ansic: 1,050,583; asm: 238,243; makefile: 20,379; python: 13,537; sh: 11,827; cpp: 5,197; awk: 1,795; perl: 317; yacc: 292; pascal: 182; sed: 19
file content (193 lines) | stat: -rw-r--r-- 7,133 bytes parent folder | download | duplicates (6)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/* Double-precision vector (SVE) asinh function

   Copyright (C) 2024-2025 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */

#include "sv_math.h"

#define SignMask (0x8000000000000000)
#define One (0x3ff0000000000000)
#define Thres (0x5fe0000000000000) /* asuint64 (0x1p511).  */
#define IndexMask (((1 << V_LOG_TABLE_BITS) - 1) << 1)

static const struct data
{
  double even_coeffs[9];
  double ln2, p3, p1, p4, p0, p2, c1, c3, c5, c7, c9, c11, c13, c15, c17;
  uint64_t off, mask;

} data = {
   /* Polynomial generated using Remez on [2^-26, 1].  */
  .even_coeffs ={
    -0x1.55555555554a7p-3,
    -0x1.6db6db68332e6p-5,
    -0x1.6e8b8b654a621p-6,
    -0x1.c9871d10885afp-7,
    -0x1.3ddca533e9f54p-7,
    -0x1.b90c7099dd397p-8,
    -0x1.d217026a669ecp-9,
    -0x1.e0f37daef9127p-11,
    -0x1.021a48685e287p-14, },

  .c1 = 0x1.3333333326c7p-4,
  .c3 = 0x1.f1c71b26fb40dp-6,
  .c5 = 0x1.1c4daa9e67871p-6,
  .c7 = 0x1.7a16e8d9d2ecfp-7,
  .c9 = 0x1.0becef748dafcp-7,
  .c11 = 0x1.541f2bb1ffe51p-8,
  .c13 = 0x1.0b5c7977aaf7p-9,
  .c15 = 0x1.388b5fe542a6p-12,
  .c17 = 0x1.93d4ba83d34dap-18,

  .ln2 = 0x1.62e42fefa39efp-1,
  .p0 = -0x1.ffffffffffff7p-2,
  .p1 = 0x1.55555555170d4p-2,
  .p2 = -0x1.0000000399c27p-2,
  .p3 = 0x1.999b2e90e94cap-3,
  .p4 = -0x1.554e550bd501ep-3,
  .off = 0x3fe6900900000000,
  .mask = 0xfffULL << 52,
};

static svfloat64_t NOINLINE
special_case (svfloat64_t x, svfloat64_t y, svbool_t special)
{
  return sv_call_f64 (asinh, x, y, special);
}

static inline svfloat64_t
__sv_log_inline (svfloat64_t x, const struct data *d, const svbool_t pg)
{
  /* Double-precision SVE log, copied from SVE log implementation with some
     cosmetic modification and special-cases removed. See that file for details
     of the algorithm used.  */

  svuint64_t ix = svreinterpret_u64 (x);
  svuint64_t i_off = svsub_x (pg, ix, d->off);
  svuint64_t i
      = svand_x (pg, svlsr_x (pg, i_off, (51 - V_LOG_TABLE_BITS)), IndexMask);
  svuint64_t iz = svsub_x (pg, ix, svand_x (pg, i_off, d->mask));
  svfloat64_t z = svreinterpret_f64 (iz);

  svfloat64_t invc = svld1_gather_index (pg, &__v_log_data.table[0].invc, i);
  svfloat64_t logc = svld1_gather_index (pg, &__v_log_data.table[0].logc, i);

  svfloat64_t ln2_p3 = svld1rq (svptrue_b64 (), &d->ln2);
  svfloat64_t p1_p4 = svld1rq (svptrue_b64 (), &d->p1);

  svfloat64_t r = svmla_x (pg, sv_f64 (-1.0), invc, z);
  svfloat64_t kd
      = svcvt_f64_x (pg, svasr_x (pg, svreinterpret_s64 (i_off), 52));

  svfloat64_t hi = svmla_lane (svadd_x (pg, logc, r), kd, ln2_p3, 0);
  svfloat64_t r2 = svmul_x (svptrue_b64 (), r, r);
  svfloat64_t y = svmla_lane (sv_f64 (d->p2), r, ln2_p3, 1);
  svfloat64_t p = svmla_lane (sv_f64 (d->p0), r, p1_p4, 0);

  y = svmla_lane (y, r2, p1_p4, 1);
  y = svmla_x (pg, p, r2, y);
  y = svmla_x (pg, hi, r2, y);
  return y;
}

/* Double-precision implementation of SVE asinh(x).
   asinh is very sensitive around 1, so it is impractical to devise a single
   low-cost algorithm which is sufficiently accurate on a wide range of input.
   Instead we use two different algorithms:
   asinh(x) = sign(x) * log(|x| + sqrt(x^2 + 1)      if |x| >= 1
	    = sign(x) * (|x| + |x|^3 * P(x^2))       otherwise
   where log(x) is an optimized log approximation, and P(x) is a polynomial
   shared with the scalar routine. The greatest observed error 2.51 ULP, in
   |x| >= 1:
   _ZGVsMxv_asinh(0x1.170469d024505p+0) got 0x1.e3181c43b0f36p-1
				       want 0x1.e3181c43b0f39p-1.  */
svfloat64_t SV_NAME_D1 (asinh) (svfloat64_t x, const svbool_t pg)
{
  const struct data *d = ptr_barrier (&data);

  svuint64_t ix = svreinterpret_u64 (x);
  svuint64_t iax = svbic_x (pg, ix, SignMask);
  svuint64_t sign = svand_x (pg, ix, SignMask);
  svfloat64_t ax = svreinterpret_f64 (iax);
  svbool_t ge1 = svcmpge (pg, iax, One);
  svbool_t special = svcmpge (pg, iax, Thres);

  /* Option 1: |x| >= 1.
     Compute asinh(x) according by asinh(x) = log(x + sqrt(x^2 + 1)).  */
  svfloat64_t option_1 = sv_f64 (0);
  if (__glibc_likely (svptest_any (pg, ge1)))
    {
      svfloat64_t x2 = svmul_x (svptrue_b64 (), ax, ax);
      option_1 = __sv_log_inline (
	  svadd_x (pg, ax, svsqrt_x (pg, svadd_x (pg, x2, 1))), d, pg);
    }

  /* Option 2: |x| < 1.
     Compute asinh(x) using a polynomial.
     The largest observed error in this region is 1.51 ULPs:
     _ZGVsMxv_asinh(0x1.fe12bf8c616a2p-1) got 0x1.c1e649ee2681bp-1
					 want 0x1.c1e649ee2681dp-1.  */

  svfloat64_t option_2 = sv_f64 (0);
  if (__glibc_likely (svptest_any (pg, svnot_z (pg, ge1))))
    {
      svfloat64_t x2 = svmul_x (svptrue_b64 (), ax, ax);
      svfloat64_t x4 = svmul_x (svptrue_b64 (), x2, x2);
      /* Order-17 Pairwise Horner scheme.  */
      svfloat64_t c13 = svld1rq (svptrue_b64 (), &d->c1);
      svfloat64_t c57 = svld1rq (svptrue_b64 (), &d->c5);
      svfloat64_t c911 = svld1rq (svptrue_b64 (), &d->c9);
      svfloat64_t c1315 = svld1rq (svptrue_b64 (), &d->c13);

      svfloat64_t p01 = svmla_lane (sv_f64 (d->even_coeffs[0]), x2, c13, 0);
      svfloat64_t p23 = svmla_lane (sv_f64 (d->even_coeffs[1]), x2, c13, 1);
      svfloat64_t p45 = svmla_lane (sv_f64 (d->even_coeffs[2]), x2, c57, 0);
      svfloat64_t p67 = svmla_lane (sv_f64 (d->even_coeffs[3]), x2, c57, 1);
      svfloat64_t p89 = svmla_lane (sv_f64 (d->even_coeffs[4]), x2, c911, 0);
      svfloat64_t p1011 = svmla_lane (sv_f64 (d->even_coeffs[5]), x2, c911, 1);
      svfloat64_t p1213
	  = svmla_lane (sv_f64 (d->even_coeffs[6]), x2, c1315, 0);
      svfloat64_t p1415
	  = svmla_lane (sv_f64 (d->even_coeffs[7]), x2, c1315, 1);
      svfloat64_t p1617 = svmla_x (pg, sv_f64 (d->even_coeffs[8]), x2, d->c17);

      svfloat64_t p = svmla_x (pg, p1415, x4, p1617);
      p = svmla_x (pg, p1213, x4, p);
      p = svmla_x (pg, p1011, x4, p);
      p = svmla_x (pg, p89, x4, p);

      p = svmla_x (pg, p67, x4, p);
      p = svmla_x (pg, p45, x4, p);

      p = svmla_x (pg, p23, x4, p);

      p = svmla_x (pg, p01, x4, p);

      option_2 = svmla_x (pg, ax, p, svmul_x (svptrue_b64 (), x2, ax));
    }

  if (__glibc_unlikely (svptest_any (pg, special)))
    return special_case (
	x,
	svreinterpret_f64 (sveor_x (
	    pg, svreinterpret_u64 (svsel (ge1, option_1, option_2)), sign)),
	special);

  /* Choose the right option for each lane.  */
  svfloat64_t y = svsel (ge1, option_1, option_2);
  return svreinterpret_f64 (sveor_x (pg, svreinterpret_u64 (y), sign));
}