1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
|
/* Copyright (C) 2012-2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <math.h>
#include <math-barriers.h>
#include <math-narrow-eval.h>
#include <math-svid-compat.h>
#include <libm-alias-finite.h>
#include <libm-alias-double.h>
#include "math_config.h"
#define N (1 << EXP_TABLE_BITS)
#define IndexMask (N - 1)
#define OFlowBound 0x1.34413509f79ffp8 /* log10(DBL_MAX). */
#define UFlowBound -0x1.5ep+8 /* -350. */
#define SmallTop 0x3c6 /* top12(0x1p-57). */
#define BigTop 0x407 /* top12(0x1p8). */
#define Thresh 0x41 /* BigTop - SmallTop. */
#define Shift __exp_data.shift
#define C(i) __exp_data.exp10_poly[i]
static double
special_case (uint64_t sbits, double_t tmp, uint64_t ki)
{
double_t scale, y;
if ((ki & 0x80000000) == 0)
{
/* The exponent of scale might have overflowed by 1. */
sbits -= 1ull << 52;
scale = asdouble (sbits);
y = 2 * (scale + scale * tmp);
return check_oflow (y);
}
/* n < 0, need special care in the subnormal range. */
sbits += 1022ull << 52;
scale = asdouble (sbits);
y = scale + scale * tmp;
if (y < 1.0)
{
/* Round y to the right precision before scaling it into the subnormal
range to avoid double rounding that can cause 0.5+E/2 ulp error where
E is the worst-case ulp error outside the subnormal range. So this
is only useful if the goal is better than 1 ulp worst-case error. */
double_t lo = scale - y + scale * tmp;
double_t hi = 1.0 + y;
lo = 1.0 - hi + y + lo;
y = math_narrow_eval (hi + lo) - 1.0;
/* Avoid -0.0 with downward rounding. */
if (WANT_ROUNDING && y == 0.0)
y = 0.0;
/* The underflow exception needs to be signaled explicitly. */
math_force_eval (math_opt_barrier (0x1p-1022) * 0x1p-1022);
}
y = 0x1p-1022 * y;
return check_uflow (y);
}
/* Double-precision 10^x approximation. Largest observed error is ~0.513 ULP. */
double
__exp10 (double x)
{
uint64_t ix = asuint64 (x);
uint32_t abstop = (ix >> 52) & 0x7ff;
if (__glibc_unlikely (abstop - SmallTop >= Thresh))
{
if (abstop - SmallTop >= 0x80000000)
/* Avoid spurious underflow for tiny x.
Note: 0 is common input. */
return x + 1;
if (abstop == 0x7ff)
return ix == asuint64 (-INFINITY) ? 0.0 : x + 1.0;
if (x >= OFlowBound)
return __math_oflow (0);
if (x < UFlowBound)
return __math_uflow (0);
/* Large x is special-cased below. */
abstop = 0;
}
/* Reduce x: z = x * N / log10(2), k = round(z). */
double_t z = __exp_data.invlog10_2N * x;
double_t kd;
uint64_t ki;
#if TOINT_INTRINSICS
kd = roundtoint (z);
ki = converttoint (z);
#else
kd = math_narrow_eval (z + Shift);
ki = asuint64 (kd);
kd -= Shift;
#endif
/* r = x - k * log10(2), r in [-0.5, 0.5]. */
double_t r = x;
r = __exp_data.neglog10_2hiN * kd + r;
r = __exp_data.neglog10_2loN * kd + r;
/* exp10(x) = 2^(k/N) * 2^(r/N).
Approximate the two components separately. */
/* s = 2^(k/N), using lookup table. */
uint64_t e = ki << (52 - EXP_TABLE_BITS);
uint64_t i = (ki & IndexMask) * 2;
uint64_t u = __exp_data.tab[i + 1];
uint64_t sbits = u + e;
double_t tail = asdouble (__exp_data.tab[i]);
/* 2^(r/N) ~= 1 + r * Poly(r). */
double_t r2 = r * r;
double_t p = C (0) + r * C (1);
double_t y = C (2) + r * C (3);
y = y + r2 * C (4);
y = p + r2 * y;
y = tail + y * r;
if (__glibc_unlikely (abstop == 0))
return special_case (sbits, y, ki);
/* Assemble components:
y = 2^(r/N) * 2^(k/N)
~= (y + 1) * s. */
double_t s = asdouble (sbits);
return s * y + s;
}
strong_alias (__exp10, __ieee754_exp10)
libm_alias_finite (__ieee754_exp10, __exp10)
#if LIBM_SVID_COMPAT
versioned_symbol (libm, __exp10, exp10, GLIBC_2_39);
libm_alias_double_other (__exp10, exp10)
#else
libm_alias_double (__exp10, exp10)
#endif
|