1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
/* lgamma expanding around zeros.
Copyright (C) 2015-2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <float.h>
#include <math.h>
#include <math-narrow-eval.h>
#include <math_private.h>
#include <fenv_private.h>
static const double lgamma_zeros[][2] =
{
{ -0x2.74ff92c01f0d8p+0, -0x2.abec9f315f1ap-56 },
{ -0x2.bf6821437b202p+0, 0x6.866a5b4b9be14p-56 },
{ -0x3.24c1b793cb35ep+0, -0xf.b8be699ad3d98p-56 },
{ -0x3.f48e2a8f85fcap+0, -0x1.70d4561291237p-56 },
{ -0x4.0a139e1665604p+0, 0xf.3c60f4f21e7fp-56 },
{ -0x4.fdd5de9bbabf4p+0, 0xa.ef2f55bf89678p-56 },
{ -0x5.021a95fc2db64p+0, -0x3.2a4c56e595394p-56 },
{ -0x5.ffa4bd647d034p+0, -0x1.7dd4ed62cbd32p-52 },
{ -0x6.005ac9625f234p+0, 0x4.9f83d2692e9c8p-56 },
{ -0x6.fff2fddae1bcp+0, 0xc.29d949a3dc03p-60 },
{ -0x7.000cff7b7f87cp+0, 0x1.20bb7d2324678p-52 },
{ -0x7.fffe5fe05673cp+0, -0x3.ca9e82b522b0cp-56 },
{ -0x8.0001a01459fc8p+0, -0x1.f60cb3cec1cedp-52 },
{ -0x8.ffffd1c425e8p+0, -0xf.fc864e9574928p-56 },
{ -0x9.00002e3bb47d8p+0, -0x6.d6d843fedc35p-56 },
{ -0x9.fffffb606bep+0, 0x2.32f9d51885afap-52 },
{ -0xa.0000049f93bb8p+0, -0x1.927b45d95e154p-52 },
{ -0xa.ffffff9466eap+0, 0xe.4c92532d5243p-56 },
{ -0xb.0000006b9915p+0, -0x3.15d965a6ffea4p-52 },
{ -0xb.fffffff708938p+0, -0x7.387de41acc3d4p-56 },
{ -0xc.00000008f76c8p+0, 0x8.cea983f0fdafp-56 },
{ -0xc.ffffffff4f6ep+0, 0x3.09e80685a0038p-52 },
{ -0xd.00000000b092p+0, -0x3.09c06683dd1bap-52 },
{ -0xd.fffffffff3638p+0, 0x3.a5461e7b5c1f6p-52 },
{ -0xe.000000000c9c8p+0, -0x3.a545e94e75ec6p-52 },
{ -0xe.ffffffffff29p+0, 0x3.f9f399fb10cfcp-52 },
{ -0xf.0000000000d7p+0, -0x3.f9f399bd0e42p-52 },
{ -0xf.fffffffffff28p+0, -0xc.060c6621f513p-56 },
{ -0x1.000000000000dp+4, -0x7.3f9f399da1424p-52 },
{ -0x1.0ffffffffffffp+4, -0x3.569c47e7a93e2p-52 },
{ -0x1.1000000000001p+4, 0x3.569c47e7a9778p-52 },
{ -0x1.2p+4, 0xb.413c31dcbecdp-56 },
{ -0x1.2p+4, -0xb.413c31dcbeca8p-56 },
{ -0x1.3p+4, 0x9.7a4da340a0ab8p-60 },
{ -0x1.3p+4, -0x9.7a4da340a0ab8p-60 },
{ -0x1.4p+4, 0x7.950ae90080894p-64 },
{ -0x1.4p+4, -0x7.950ae90080894p-64 },
{ -0x1.5p+4, 0x5.c6e3bdb73d5c8p-68 },
{ -0x1.5p+4, -0x5.c6e3bdb73d5c8p-68 },
{ -0x1.6p+4, 0x4.338e5b6dfe14cp-72 },
{ -0x1.6p+4, -0x4.338e5b6dfe14cp-72 },
{ -0x1.7p+4, 0x2.ec368262c7034p-76 },
{ -0x1.7p+4, -0x2.ec368262c7034p-76 },
{ -0x1.8p+4, 0x1.f2cf01972f578p-80 },
{ -0x1.8p+4, -0x1.f2cf01972f578p-80 },
{ -0x1.9p+4, 0x1.3f3ccdd165fa9p-84 },
{ -0x1.9p+4, -0x1.3f3ccdd165fa9p-84 },
{ -0x1.ap+4, 0xc.4742fe35272dp-92 },
{ -0x1.ap+4, -0xc.4742fe35272dp-92 },
{ -0x1.bp+4, 0x7.46ac70b733a8cp-96 },
{ -0x1.bp+4, -0x7.46ac70b733a8cp-96 },
{ -0x1.cp+4, 0x4.2862898d42174p-100 },
};
static const double e_hi = 0x2.b7e151628aed2p+0, e_lo = 0xa.6abf7158809dp-56;
/* Coefficients B_2k / 2k(2k-1) of x^-(2k-1) in Stirling's
approximation to lgamma function. */
static const double lgamma_coeff[] =
{
0x1.5555555555555p-4,
-0xb.60b60b60b60b8p-12,
0x3.4034034034034p-12,
-0x2.7027027027028p-12,
0x3.72a3c5631fe46p-12,
-0x7.daac36664f1f4p-12,
0x1.a41a41a41a41ap-8,
-0x7.90a1b2c3d4e6p-8,
0x2.dfd2c703c0dp-4,
-0x1.6476701181f3ap+0,
0xd.672219167003p+0,
-0x9.cd9292e6660d8p+4,
};
#define NCOEFF (sizeof (lgamma_coeff) / sizeof (lgamma_coeff[0]))
/* Polynomial approximations to (|gamma(x)|-1)(x-n)/(x-x0), where n is
the integer end-point of the half-integer interval containing x and
x0 is the zero of lgamma in that half-integer interval. Each
polynomial is expressed in terms of x-xm, where xm is the midpoint
of the interval for which the polynomial applies. */
static const double poly_coeff[] =
{
/* Interval [-2.125, -2] (polynomial degree 10). */
-0x1.0b71c5c54d42fp+0,
-0xc.73a1dc05f3758p-4,
-0x1.ec84140851911p-4,
-0xe.37c9da23847e8p-4,
-0x1.03cd87cdc0ac6p-4,
-0xe.ae9aedce12eep-4,
0x9.b11a1780cfd48p-8,
-0xe.f25fc460bdebp-4,
0x2.6e984c61ca912p-4,
-0xf.83fea1c6d35p-4,
0x4.760c8c8909758p-4,
/* Interval [-2.25, -2.125] (polynomial degree 11). */
-0xf.2930890d7d678p-4,
-0xc.a5cfde054eaa8p-4,
0x3.9c9e0fdebd99cp-4,
-0x1.02a5ad35619d9p+0,
0x9.6e9b1167c164p-4,
-0x1.4d8332eba090ap+0,
0x1.1c0c94b1b2b6p+0,
-0x1.c9a70d138c74ep+0,
0x1.d7d9cf1d4c196p+0,
-0x2.91fbf4cd6abacp+0,
0x2.f6751f74b8ff8p+0,
-0x3.e1bb7b09e3e76p+0,
/* Interval [-2.375, -2.25] (polynomial degree 12). */
-0xd.7d28d505d618p-4,
-0xe.69649a3040958p-4,
0xb.0d74a2827cd6p-4,
-0x1.924b09228a86ep+0,
0x1.d49b12bcf6175p+0,
-0x3.0898bb530d314p+0,
0x4.207a6be8fda4cp+0,
-0x6.39eef56d4e9p+0,
0x8.e2e42acbccec8p+0,
-0xd.0d91c1e596a68p+0,
0x1.2e20d7099c585p+4,
-0x1.c4eb6691b4ca9p+4,
0x2.96a1a11fd85fep+4,
/* Interval [-2.5, -2.375] (polynomial degree 13). */
-0xb.74ea1bcfff948p-4,
-0x1.2a82bd590c376p+0,
0x1.88020f828b81p+0,
-0x3.32279f040d7aep+0,
0x5.57ac8252ce868p+0,
-0x9.c2aedd093125p+0,
0x1.12c132716e94cp+4,
-0x1.ea94dfa5c0a6dp+4,
0x3.66b61abfe858cp+4,
-0x6.0cfceb62a26e4p+4,
0xa.beeba09403bd8p+4,
-0x1.3188d9b1b288cp+8,
0x2.37f774dd14c44p+8,
-0x3.fdf0a64cd7136p+8,
/* Interval [-2.625, -2.5] (polynomial degree 13). */
-0x3.d10108c27ebbp-4,
0x1.cd557caff7d2fp+0,
0x3.819b4856d36cep+0,
0x6.8505cbacfc42p+0,
0xb.c1b2e6567a4dp+0,
0x1.50a53a3ce6c73p+4,
0x2.57adffbb1ec0cp+4,
0x4.2b15549cf400cp+4,
0x7.698cfd82b3e18p+4,
0xd.2decde217755p+4,
0x1.7699a624d07b9p+8,
0x2.98ecf617abbfcp+8,
0x4.d5244d44d60b4p+8,
0x8.e962bf7395988p+8,
/* Interval [-2.75, -2.625] (polynomial degree 12). */
-0x6.b5d252a56e8a8p-4,
0x1.28d60383da3a6p+0,
0x1.db6513ada89bep+0,
0x2.e217118fa8c02p+0,
0x4.450112c651348p+0,
0x6.4af990f589b8cp+0,
0x9.2db5963d7a238p+0,
0xd.62c03647da19p+0,
0x1.379f81f6416afp+4,
0x1.c5618b4fdb96p+4,
0x2.9342d0af2ac4ep+4,
0x3.d9cdf56d2b186p+4,
0x5.ab9f91d5a27a4p+4,
/* Interval [-2.875, -2.75] (polynomial degree 11). */
-0x8.a41b1e4f36ff8p-4,
0xc.da87d3b69dbe8p-4,
0x1.1474ad5c36709p+0,
0x1.761ecb90c8c5cp+0,
0x1.d279bff588826p+0,
0x2.4e5d003fb36a8p+0,
0x2.d575575566842p+0,
0x3.85152b0d17756p+0,
0x4.5213d921ca13p+0,
0x5.55da7dfcf69c4p+0,
0x6.acef729b9404p+0,
0x8.483cc21dd0668p+0,
/* Interval [-3, -2.875] (polynomial degree 11). */
-0xa.046d667e468f8p-4,
0x9.70b88dcc006cp-4,
0xa.a8a39421c94dp-4,
0xd.2f4d1363f98ep-4,
0xd.ca9aa19975b7p-4,
0xf.cf09c2f54404p-4,
0x1.04b1365a9adfcp+0,
0x1.22b54ef213798p+0,
0x1.2c52c25206bf5p+0,
0x1.4aa3d798aace4p+0,
0x1.5c3f278b504e3p+0,
0x1.7e08292cc347bp+0,
};
static const size_t poly_deg[] =
{
10,
11,
12,
13,
13,
12,
11,
11,
};
static const size_t poly_end[] =
{
10,
22,
35,
49,
63,
76,
88,
100,
};
/* Compute sin (pi * X) for -0.25 <= X <= 0.5. */
static double
lg_sinpi (double x)
{
if (x <= 0.25)
return __sin (M_PI * x);
else
return __cos (M_PI * (0.5 - x));
}
/* Compute cos (pi * X) for -0.25 <= X <= 0.5. */
static double
lg_cospi (double x)
{
if (x <= 0.25)
return __cos (M_PI * x);
else
return __sin (M_PI * (0.5 - x));
}
/* Compute cot (pi * X) for -0.25 <= X <= 0.5. */
static double
lg_cotpi (double x)
{
return lg_cospi (x) / lg_sinpi (x);
}
/* Compute lgamma of a negative argument -28 < X < -2, setting
*SIGNGAMP accordingly. */
double
__lgamma_neg (double x, int *signgamp)
{
/* Determine the half-integer region X lies in, handle exact
integers and determine the sign of the result. */
int i = floor (-2 * x);
if ((i & 1) == 0 && i == -2 * x)
return 1.0 / 0.0;
double xn = ((i & 1) == 0 ? -i / 2 : (-i - 1) / 2);
i -= 4;
*signgamp = ((i & 2) == 0 ? -1 : 1);
SET_RESTORE_ROUND (FE_TONEAREST);
/* Expand around the zero X0 = X0_HI + X0_LO. */
double x0_hi = lgamma_zeros[i][0], x0_lo = lgamma_zeros[i][1];
double xdiff = x - x0_hi - x0_lo;
/* For arguments in the range -3 to -2, use polynomial
approximations to an adjusted version of the gamma function. */
if (i < 2)
{
int j = floor (-8 * x) - 16;
double xm = (-33 - 2 * j) * 0.0625;
double x_adj = x - xm;
size_t deg = poly_deg[j];
size_t end = poly_end[j];
double g = poly_coeff[end];
for (size_t j = 1; j <= deg; j++)
g = g * x_adj + poly_coeff[end - j];
return __log1p (g * xdiff / (x - xn));
}
/* The result we want is log (sinpi (X0) / sinpi (X))
+ log (gamma (1 - X0) / gamma (1 - X)). */
double x_idiff = fabs (xn - x), x0_idiff = fabs (xn - x0_hi - x0_lo);
double log_sinpi_ratio;
if (x0_idiff < x_idiff * 0.5)
/* Use log not log1p to avoid inaccuracy from log1p of arguments
close to -1. */
log_sinpi_ratio = __ieee754_log (lg_sinpi (x0_idiff)
/ lg_sinpi (x_idiff));
else
{
/* Use log1p not log to avoid inaccuracy from log of arguments
close to 1. X0DIFF2 has positive sign if X0 is further from
XN than X is from XN, negative sign otherwise. */
double x0diff2 = ((i & 1) == 0 ? xdiff : -xdiff) * 0.5;
double sx0d2 = lg_sinpi (x0diff2);
double cx0d2 = lg_cospi (x0diff2);
log_sinpi_ratio = __log1p (2 * sx0d2
* (-sx0d2 + cx0d2 * lg_cotpi (x_idiff)));
}
double log_gamma_ratio;
double y0 = math_narrow_eval (1 - x0_hi);
double y0_eps = -x0_hi + (1 - y0) - x0_lo;
double y = math_narrow_eval (1 - x);
double y_eps = -x + (1 - y);
/* We now wish to compute LOG_GAMMA_RATIO
= log (gamma (Y0 + Y0_EPS) / gamma (Y + Y_EPS)). XDIFF
accurately approximates the difference Y0 + Y0_EPS - Y -
Y_EPS. Use Stirling's approximation. First, we may need to
adjust into the range where Stirling's approximation is
sufficiently accurate. */
double log_gamma_adj = 0;
if (i < 6)
{
int n_up = (7 - i) / 2;
double ny0, ny0_eps, ny, ny_eps;
ny0 = math_narrow_eval (y0 + n_up);
ny0_eps = y0 - (ny0 - n_up) + y0_eps;
y0 = ny0;
y0_eps = ny0_eps;
ny = math_narrow_eval (y + n_up);
ny_eps = y - (ny - n_up) + y_eps;
y = ny;
y_eps = ny_eps;
double prodm1 = __lgamma_product (xdiff, y - n_up, y_eps, n_up);
log_gamma_adj = -__log1p (prodm1);
}
double log_gamma_high
= (xdiff * __log1p ((y0 - e_hi - e_lo + y0_eps) / e_hi)
+ (y - 0.5 + y_eps) * __log1p (xdiff / y) + log_gamma_adj);
/* Compute the sum of (B_2k / 2k(2k-1))(Y0^-(2k-1) - Y^-(2k-1)). */
double y0r = 1 / y0, yr = 1 / y;
double y0r2 = y0r * y0r, yr2 = yr * yr;
double rdiff = -xdiff / (y * y0);
double bterm[NCOEFF];
double dlast = rdiff, elast = rdiff * yr * (yr + y0r);
bterm[0] = dlast * lgamma_coeff[0];
for (size_t j = 1; j < NCOEFF; j++)
{
double dnext = dlast * y0r2 + elast;
double enext = elast * yr2;
bterm[j] = dnext * lgamma_coeff[j];
dlast = dnext;
elast = enext;
}
double log_gamma_low = 0;
for (size_t j = 0; j < NCOEFF; j++)
log_gamma_low += bterm[NCOEFF - 1 - j];
log_gamma_ratio = log_gamma_high + log_gamma_low;
return log_sinpi_ratio + log_gamma_ratio;
}
|