1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257
|
/* Configuration for double precision math routines.
Copyright (C) 2018-2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#ifndef _MATH_CONFIG_H
#define _MATH_CONFIG_H
#include <math.h>
#include <math_private.h>
#include <nan-high-order-bit.h>
#include <stdint.h>
#ifndef WANT_ROUNDING
/* Correct special case results in non-nearest rounding modes. */
# define WANT_ROUNDING 1
#endif
#ifndef WANT_ERRNO
/* Set errno according to ISO C with (math_errhandling & MATH_ERRNO) != 0. */
# define WANT_ERRNO 1
#endif
#ifndef WANT_ERRNO_UFLOW
/* Set errno to ERANGE if result underflows to 0 (in all rounding modes). */
# define WANT_ERRNO_UFLOW (WANT_ROUNDING && WANT_ERRNO)
#endif
#ifndef TOINT_INTRINSICS
/* When set, the roundtoint and converttoint functions are provided with
the semantics documented below. */
# define TOINT_INTRINSICS 0
#endif
static inline int
clz_uint64 (uint64_t x)
{
if (sizeof (uint64_t) == sizeof (unsigned long))
return __builtin_clzl (x);
else
return __builtin_clzll (x);
}
static inline int
ctz_uint64 (uint64_t x)
{
if (sizeof (uint64_t) == sizeof (unsigned long))
return __builtin_ctzl (x);
else
return __builtin_ctzll (x);
}
#if TOINT_INTRINSICS
/* Round x to nearest int in all rounding modes, ties have to be rounded
consistently with converttoint so the results match. If the result
would be outside of [-2^31, 2^31-1] then the semantics is unspecified. */
static inline double_t
roundtoint (double_t x);
/* Convert x to nearest int in all rounding modes, ties have to be rounded
consistently with roundtoint. If the result is not representible in an
int32_t then the semantics is unspecified. */
static inline int32_t
converttoint (double_t x);
#endif
static inline uint64_t
asuint64 (double f)
{
union
{
double f;
uint64_t i;
} u = {f};
return u.i;
}
static inline double
asdouble (uint64_t i)
{
union
{
uint64_t i;
double f;
} u = {i};
return u.f;
}
static inline int
issignaling_inline (double x)
{
uint64_t ix = asuint64 (x);
if (HIGH_ORDER_BIT_IS_SET_FOR_SNAN)
return (ix & 0x7ff8000000000000) == 0x7ff8000000000000;
return 2 * (ix ^ 0x0008000000000000) > 2 * 0x7ff8000000000000ULL;
}
#define BIT_WIDTH 64
#define MANTISSA_WIDTH 52
#define EXPONENT_WIDTH 11
#define MANTISSA_MASK UINT64_C(0x000fffffffffffff)
#define EXPONENT_MASK UINT64_C(0x7ff0000000000000)
#define EXP_MANT_MASK UINT64_C(0x7fffffffffffffff)
#define QUIET_NAN_MASK UINT64_C(0x0008000000000000)
#define SIGN_MASK UINT64_C(0x8000000000000000)
static inline bool
is_nan (uint64_t x)
{
return (x & EXP_MANT_MASK) > EXPONENT_MASK;
}
static inline uint64_t
get_mantissa (uint64_t x)
{
return x & MANTISSA_MASK;
}
/* Convert integer number X, unbiased exponent EP, and sign S to double:
result = X * 2^(EP+1 - exponent_bias)
NB: zero is not supported. */
static inline double
make_double (uint64_t x, int64_t ep, uint64_t s)
{
int lz = clz_uint64 (x) - EXPONENT_WIDTH;
x <<= lz;
ep -= lz;
if (__glibc_unlikely (ep < 0 || x == 0))
{
x >>= -ep;
ep = 0;
}
return asdouble (s + x + (ep << MANTISSA_WIDTH));
}
/* Error handling tail calls for special cases, with a sign argument.
The sign of the return value is set if the argument is non-zero. */
/* The result overflows. */
attribute_hidden double __math_oflow (uint32_t);
/* The result underflows to 0 in nearest rounding mode. */
attribute_hidden double __math_uflow (uint32_t);
/* The result underflows to 0 in some directed rounding mode only. */
attribute_hidden double __math_may_uflow (uint32_t);
/* Division by zero. */
attribute_hidden double __math_divzero (uint32_t);
/* Error handling using input checking. */
/* Invalid input unless it is a quiet NaN. */
attribute_hidden double __math_invalid (double);
/* Error handling using output checking, only for errno setting. */
/* Check if the result generated a demain error. */
attribute_hidden double __math_edom (double x);
/* Check if the result overflowed to infinity. */
attribute_hidden double __math_check_oflow (double);
/* Check if the result underflowed to 0. */
attribute_hidden double __math_check_uflow (double);
/* Check if the result overflowed to infinity. */
static inline double
check_oflow (double x)
{
return WANT_ERRNO ? __math_check_oflow (x) : x;
}
/* Check if the result underflowed to 0. */
static inline double
check_uflow (double x)
{
return WANT_ERRNO ? __math_check_uflow (x) : x;
}
#define EXP_TABLE_BITS 7
#define EXP_POLY_ORDER 5
#define EXP2_POLY_ORDER 5
extern const struct exp_data
{
double invln2N;
double negln2hiN;
double negln2loN;
double poly[4]; /* Last four coefficients. */
double shift;
double exp2_shift;
double exp2_poly[EXP2_POLY_ORDER];
double neglog10_2hiN;
double neglog10_2loN;
double exp10_poly[5];
double invlog10_2N;
uint64_t tab[2*(1 << EXP_TABLE_BITS)];
} __exp_data attribute_hidden;
#define LOG_TABLE_BITS 7
#define LOG_POLY_ORDER 6
#define LOG_POLY1_ORDER 12
extern const struct log_data
{
double ln2hi;
double ln2lo;
double poly[LOG_POLY_ORDER - 1]; /* First coefficient is 1. */
double poly1[LOG_POLY1_ORDER - 1];
/* See e_log_data.c for details. */
struct {double invc, logc;} tab[1 << LOG_TABLE_BITS];
#ifndef __FP_FAST_FMA
struct {double chi, clo;} tab2[1 << LOG_TABLE_BITS];
#endif
} __log_data attribute_hidden;
#define LOG2_TABLE_BITS 6
#define LOG2_POLY_ORDER 7
#define LOG2_POLY1_ORDER 11
extern const struct log2_data
{
double invln2hi;
double invln2lo;
double poly[LOG2_POLY_ORDER - 1];
double poly1[LOG2_POLY1_ORDER - 1];
/* See e_log2_data.c for details. */
struct {double invc, logc;} tab[1 << LOG2_TABLE_BITS];
#ifndef __FP_FAST_FMA
struct {double chi, clo;} tab2[1 << LOG2_TABLE_BITS];
#endif
} __log2_data attribute_hidden;
#define POW_LOG_TABLE_BITS 7
#define POW_LOG_POLY_ORDER 8
extern const struct pow_log_data
{
double ln2hi;
double ln2lo;
double poly[POW_LOG_POLY_ORDER - 1]; /* First coefficient is 1. */
/* Note: the pad field is unused, but allows slightly faster indexing. */
/* See e_pow_log_data.c for details. */
struct {double invc, pad, logc, logctail;} tab[1 << POW_LOG_TABLE_BITS];
} __pow_log_data attribute_hidden;
#endif
|