1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
|
/* Double-precision vector (SVE) asinh function
Copyright (C) 2024-2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include "sv_math.h"
#include "poly_sve_f64.h"
#define SignMask (0x8000000000000000)
#define One (0x3ff0000000000000)
#define Thres (0x5fe0000000000000) /* asuint64 (0x1p511). */
static const struct data
{
double poly[18];
double ln2, p3, p1, p4, p0, p2;
uint64_t n;
uint64_t off;
} data = {
/* Polynomial generated using Remez on [2^-26, 1]. */
.poly
= { -0x1.55555555554a7p-3, 0x1.3333333326c7p-4, -0x1.6db6db68332e6p-5,
0x1.f1c71b26fb40dp-6, -0x1.6e8b8b654a621p-6, 0x1.1c4daa9e67871p-6,
-0x1.c9871d10885afp-7, 0x1.7a16e8d9d2ecfp-7, -0x1.3ddca533e9f54p-7,
0x1.0becef748dafcp-7, -0x1.b90c7099dd397p-8, 0x1.541f2bb1ffe51p-8,
-0x1.d217026a669ecp-9, 0x1.0b5c7977aaf7p-9, -0x1.e0f37daef9127p-11,
0x1.388b5fe542a6p-12, -0x1.021a48685e287p-14, 0x1.93d4ba83d34dap-18 },
.ln2 = 0x1.62e42fefa39efp-1,
.p0 = -0x1.ffffffffffff7p-2,
.p1 = 0x1.55555555170d4p-2,
.p2 = -0x1.0000000399c27p-2,
.p3 = 0x1.999b2e90e94cap-3,
.p4 = -0x1.554e550bd501ep-3,
.n = 1 << V_LOG_TABLE_BITS,
.off = 0x3fe6900900000000
};
static svfloat64_t NOINLINE
special_case (svfloat64_t x, svfloat64_t y, svbool_t special)
{
return sv_call_f64 (asinh, x, y, special);
}
static inline svfloat64_t
__sv_log_inline (svfloat64_t x, const struct data *d, const svbool_t pg)
{
/* Double-precision SVE log, copied from SVE log implementation with some
cosmetic modification and special-cases removed. See that file for details
of the algorithm used. */
svuint64_t ix = svreinterpret_u64 (x);
svuint64_t tmp = svsub_x (pg, ix, d->off);
svuint64_t i = svand_x (pg, svlsr_x (pg, tmp, (51 - V_LOG_TABLE_BITS)),
(d->n - 1) << 1);
svint64_t k = svasr_x (pg, svreinterpret_s64 (tmp), 52);
svuint64_t iz = svsub_x (pg, ix, svand_x (pg, tmp, 0xfffULL << 52));
svfloat64_t z = svreinterpret_f64 (iz);
svfloat64_t invc = svld1_gather_index (pg, &__v_log_data.table[0].invc, i);
svfloat64_t logc = svld1_gather_index (pg, &__v_log_data.table[0].logc, i);
svfloat64_t ln2_p3 = svld1rq (svptrue_b64 (), &d->ln2);
svfloat64_t p1_p4 = svld1rq (svptrue_b64 (), &d->p1);
svfloat64_t r = svmla_x (pg, sv_f64 (-1.0), invc, z);
svfloat64_t kd = svcvt_f64_x (pg, k);
svfloat64_t hi = svmla_lane (svadd_x (pg, logc, r), kd, ln2_p3, 0);
svfloat64_t r2 = svmul_x (pg, r, r);
svfloat64_t y = svmla_lane (sv_f64 (d->p2), r, ln2_p3, 1);
svfloat64_t p = svmla_lane (sv_f64 (d->p0), r, p1_p4, 0);
y = svmla_lane (y, r2, p1_p4, 1);
y = svmla_x (pg, p, r2, y);
y = svmla_x (pg, hi, r2, y);
return y;
}
/* Double-precision implementation of SVE asinh(x).
asinh is very sensitive around 1, so it is impractical to devise a single
low-cost algorithm which is sufficiently accurate on a wide range of input.
Instead we use two different algorithms:
asinh(x) = sign(x) * log(|x| + sqrt(x^2 + 1) if |x| >= 1
= sign(x) * (|x| + |x|^3 * P(x^2)) otherwise
where log(x) is an optimized log approximation, and P(x) is a polynomial
shared with the scalar routine. The greatest observed error 2.51 ULP, in
|x| >= 1:
_ZGVsMxv_asinh(0x1.170469d024505p+0) got 0x1.e3181c43b0f36p-1
want 0x1.e3181c43b0f39p-1. */
svfloat64_t SV_NAME_D1 (asinh) (svfloat64_t x, const svbool_t pg)
{
const struct data *d = ptr_barrier (&data);
svuint64_t ix = svreinterpret_u64 (x);
svuint64_t iax = svbic_x (pg, ix, SignMask);
svuint64_t sign = svand_x (pg, ix, SignMask);
svfloat64_t ax = svreinterpret_f64 (iax);
svbool_t ge1 = svcmpge (pg, iax, One);
svbool_t special = svcmpge (pg, iax, Thres);
/* Option 1: |x| >= 1.
Compute asinh(x) according by asinh(x) = log(x + sqrt(x^2 + 1)). */
svfloat64_t option_1 = sv_f64 (0);
if (__glibc_likely (svptest_any (pg, ge1)))
{
svfloat64_t x2 = svmul_x (pg, ax, ax);
option_1 = __sv_log_inline (
svadd_x (pg, ax, svsqrt_x (pg, svadd_x (pg, x2, 1))), d, pg);
}
/* Option 2: |x| < 1.
Compute asinh(x) using a polynomial.
The largest observed error in this region is 1.51 ULPs:
_ZGVsMxv_asinh(0x1.fe12bf8c616a2p-1) got 0x1.c1e649ee2681bp-1
want 0x1.c1e649ee2681dp-1. */
svfloat64_t option_2 = sv_f64 (0);
if (__glibc_likely (svptest_any (pg, svnot_z (pg, ge1))))
{
svfloat64_t x2 = svmul_x (pg, ax, ax);
svfloat64_t x4 = svmul_x (pg, x2, x2);
svfloat64_t p = sv_pw_horner_17_f64_x (pg, x2, x4, d->poly);
option_2 = svmla_x (pg, ax, p, svmul_x (pg, x2, ax));
}
/* Choose the right option for each lane. */
svfloat64_t y = svsel (ge1, option_1, option_2);
if (__glibc_unlikely (svptest_any (pg, special)))
return special_case (
x, svreinterpret_f64 (sveor_x (pg, svreinterpret_u64 (y), sign)),
special);
return svreinterpret_f64 (sveor_x (pg, svreinterpret_u64 (y), sign));
}
|