1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517
|
/* strchr/strchrnul optimized with 256-bit EVEX instructions.
Copyright (C) 2021-2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <isa-level.h>
#if ISA_SHOULD_BUILD (4)
# include <sysdep.h>
# ifndef STRCHR
# define STRCHR __strchr_evex
# endif
# ifndef VEC_SIZE
# include "x86-evex256-vecs.h"
# endif
# ifdef USE_AS_WCSCHR
# define VPBROADCAST vpbroadcastd
# define VPCMP vpcmpd
# define VPCMPEQ vpcmpeqd
# define VPTESTN vptestnmd
# define VPTEST vptestmd
# define VPMINU vpminud
# define CHAR_REG esi
# define SHIFT_REG rcx
# define CHAR_SIZE 4
# define USE_WIDE_CHAR
# else
# define VPBROADCAST vpbroadcastb
# define VPCMP vpcmpb
# define VPCMPEQ vpcmpeqb
# define VPTESTN vptestnmb
# define VPTEST vptestmb
# define VPMINU vpminub
# define CHAR_REG sil
# define SHIFT_REG rdi
# define CHAR_SIZE 1
# endif
# include "reg-macros.h"
# if VEC_SIZE == 64
# define MASK_GPR rcx
# define LOOP_REG rax
# define COND_MASK(k_reg) {%k_reg}
# else
# define MASK_GPR rax
# define LOOP_REG rdi
# define COND_MASK(k_reg)
# endif
# define CHAR_PER_VEC (VEC_SIZE / CHAR_SIZE)
# if CHAR_PER_VEC == 64
# define LAST_VEC_OFFSET (VEC_SIZE * 3)
# define TESTZ(reg) incq %VGPR_SZ(reg, 64)
# else
# if CHAR_PER_VEC == 32
# define TESTZ(reg) incl %VGPR_SZ(reg, 32)
# elif CHAR_PER_VEC == 16
# define TESTZ(reg) incw %VGPR_SZ(reg, 16)
# else
# define TESTZ(reg) incb %VGPR_SZ(reg, 8)
# endif
# define LAST_VEC_OFFSET (VEC_SIZE * 2)
# endif
# define VMATCH VMM(0)
# define PAGE_SIZE 4096
.section SECTION(.text), "ax", @progbits
ENTRY_P2ALIGN (STRCHR, 6)
/* Broadcast CHAR to VEC_0. */
VPBROADCAST %esi, %VMATCH
movl %edi, %eax
andl $(PAGE_SIZE - 1), %eax
/* Check if we cross page boundary with one vector load.
Otherwise it is safe to use an unaligned load. */
cmpl $(PAGE_SIZE - VEC_SIZE), %eax
ja L(cross_page_boundary)
/* Check the first VEC_SIZE bytes. Search for both CHAR and the
null bytes. */
VMOVU (%rdi), %VMM(1)
/* Leaves only CHARS matching esi as 0. */
vpxorq %VMM(1), %VMATCH, %VMM(2)
VPMINU %VMM(2), %VMM(1), %VMM(2)
/* Each bit in K0 represents a CHAR or a null byte in VEC_1. */
VPTESTN %VMM(2), %VMM(2), %k0
KMOV %k0, %VRAX
# if VEC_SIZE == 64 && defined USE_AS_STRCHRNUL
/* If VEC_SIZE == 64 && STRCHRNUL use bsf to test condition so
that all logic for match/null in first VEC first in 1x cache
lines. This has a slight cost to larger sizes. */
bsf %VRAX, %VRAX
jz L(aligned_more)
# else
test %VRAX, %VRAX
jz L(aligned_more)
bsf %VRAX, %VRAX
# endif
# ifndef USE_AS_STRCHRNUL
/* Found CHAR or the null byte. */
cmp (%rdi, %rax, CHAR_SIZE), %CHAR_REG
/* NB: Use a branch instead of cmovcc here. The expectation is
that with strchr the user will branch based on input being
null. Since this branch will be 100% predictive of the user
branch a branch miss here should save what otherwise would
be branch miss in the user code. Otherwise using a branch 1)
saves code size and 2) is faster in highly predictable
environments. */
jne L(zero)
# endif
# ifdef USE_AS_WCSCHR
/* NB: Multiply wchar_t count by 4 to get the number of bytes.
*/
leaq (%rdi, %rax, CHAR_SIZE), %rax
# else
addq %rdi, %rax
# endif
ret
# ifndef USE_AS_STRCHRNUL
L(zero):
xorl %eax, %eax
ret
# endif
.p2align 4,, 2
L(first_vec_x3):
subq $-(VEC_SIZE * 2), %rdi
# if VEC_SIZE == 32
/* Reuse L(first_vec_x3) for last VEC2 only for VEC_SIZE == 32.
For VEC_SIZE == 64 the registers don't match. */
L(last_vec_x2):
# endif
L(first_vec_x1):
/* Use bsf here to save 1-byte keeping keeping the block in 1x
fetch block. eax guaranteed non-zero. */
bsf %VRCX, %VRCX
# ifndef USE_AS_STRCHRNUL
/* Found CHAR or the null byte. */
cmp (VEC_SIZE)(%rdi, %rcx, CHAR_SIZE), %CHAR_REG
jne L(zero)
# endif
/* NB: Multiply sizeof char type (1 or 4) to get the number of
bytes. */
leaq (VEC_SIZE)(%rdi, %rcx, CHAR_SIZE), %rax
ret
.p2align 4,, 2
L(first_vec_x4):
subq $-(VEC_SIZE * 2), %rdi
L(first_vec_x2):
# ifndef USE_AS_STRCHRNUL
/* Check to see if first match was CHAR (k0) or null (k1). */
KMOV %k0, %VRAX
tzcnt %VRAX, %VRAX
KMOV %k1, %VRCX
/* bzhil will not be 0 if first match was null. */
bzhi %VRAX, %VRCX, %VRCX
jne L(zero)
# else
/* Combine CHAR and null matches. */
KOR %k0, %k1, %k0
KMOV %k0, %VRAX
bsf %VRAX, %VRAX
# endif
/* NB: Multiply sizeof char type (1 or 4) to get the number of
bytes. */
leaq (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %rax
ret
# ifdef USE_AS_STRCHRNUL
/* We use this as a hook to get imm8 encoding for the jmp to
L(page_cross_boundary). This allows the hot case of a
match/null-term in first VEC to fit entirely in 1 cache
line. */
L(cross_page_boundary):
jmp L(cross_page_boundary_real)
# endif
.p2align 4
L(aligned_more):
L(cross_page_continue):
/* Align data to VEC_SIZE. */
andq $-VEC_SIZE, %rdi
/* Check the next 4 * VEC_SIZE. Only one VEC_SIZE at a time
since data is only aligned to VEC_SIZE. Use two alternating
methods for checking VEC to balance latency and port
contention. */
/* Method(1) with 8c latency:
For VEC_SIZE == 32:
p0 * 1.83, p1 * 0.83, p5 * 1.33
For VEC_SIZE == 64:
p0 * 2.50, p1 * 0.00, p5 * 1.50 */
VMOVA (VEC_SIZE)(%rdi), %VMM(1)
/* Leaves only CHARS matching esi as 0. */
vpxorq %VMM(1), %VMATCH, %VMM(2)
VPMINU %VMM(2), %VMM(1), %VMM(2)
/* Each bit in K0 represents a CHAR or a null byte in VEC_1. */
VPTESTN %VMM(2), %VMM(2), %k0
KMOV %k0, %VRCX
test %VRCX, %VRCX
jnz L(first_vec_x1)
/* Method(2) with 6c latency:
For VEC_SIZE == 32:
p0 * 1.00, p1 * 0.00, p5 * 2.00
For VEC_SIZE == 64:
p0 * 1.00, p1 * 0.00, p5 * 2.00 */
VMOVA (VEC_SIZE * 2)(%rdi), %VMM(1)
/* Each bit in K0 represents a CHAR in VEC_1. */
VPCMPEQ %VMM(1), %VMATCH, %k0
/* Each bit in K1 represents a CHAR in VEC_1. */
VPTESTN %VMM(1), %VMM(1), %k1
KORTEST %k0, %k1
jnz L(first_vec_x2)
/* By swapping between Method 1/2 we get more fair port
distrubition and better throughput. */
VMOVA (VEC_SIZE * 3)(%rdi), %VMM(1)
/* Leaves only CHARS matching esi as 0. */
vpxorq %VMM(1), %VMATCH, %VMM(2)
VPMINU %VMM(2), %VMM(1), %VMM(2)
/* Each bit in K0 represents a CHAR or a null byte in VEC_1. */
VPTESTN %VMM(2), %VMM(2), %k0
KMOV %k0, %VRCX
test %VRCX, %VRCX
jnz L(first_vec_x3)
VMOVA (VEC_SIZE * 4)(%rdi), %VMM(1)
/* Each bit in K0 represents a CHAR in VEC_1. */
VPCMPEQ %VMM(1), %VMATCH, %k0
/* Each bit in K1 represents a CHAR in VEC_1. */
VPTESTN %VMM(1), %VMM(1), %k1
KORTEST %k0, %k1
jnz L(first_vec_x4)
/* Align data to VEC_SIZE * 4 for the loop. */
# if VEC_SIZE == 64
/* Use rax for the loop reg as it allows to the loop to fit in
exactly 2-cache-lines. (more efficient imm32 + gpr
encoding). */
leaq (VEC_SIZE)(%rdi), %rax
/* No partial register stalls on evex512 processors. */
xorb %al, %al
# else
/* For VEC_SIZE == 32 continue using rdi for loop reg so we can
reuse more code and save space. */
addq $VEC_SIZE, %rdi
andq $-(VEC_SIZE * 4), %rdi
# endif
.p2align 4
L(loop_4x_vec):
/* Check 4x VEC at a time. No penalty for imm32 offset with evex
encoding (if offset % VEC_SIZE == 0). */
VMOVA (VEC_SIZE * 4)(%LOOP_REG), %VMM(1)
VMOVA (VEC_SIZE * 5)(%LOOP_REG), %VMM(2)
VMOVA (VEC_SIZE * 6)(%LOOP_REG), %VMM(3)
VMOVA (VEC_SIZE * 7)(%LOOP_REG), %VMM(4)
/* Collect bits where VEC_1 does NOT match esi. This is later
use to mask of results (getting not matches allows us to
save an instruction on combining). */
VPCMP $4, %VMATCH, %VMM(1), %k1
/* Two methods for loop depending on VEC_SIZE. This is because
with zmm registers VPMINU can only run on p0 (as opposed to
p0/p1 for ymm) so it is less preferred. */
# if VEC_SIZE == 32
/* For VEC_2 and VEC_3 use xor to set the CHARs matching esi to
zero. */
vpxorq %VMM(2), %VMATCH, %VMM(6)
vpxorq %VMM(3), %VMATCH, %VMM(7)
/* Find non-matches in VEC_4 while combining with non-matches
from VEC_1. NB: Try and use masked predicate execution on
instructions that have mask result as it has no latency
penalty. */
VPCMP $4, %VMATCH, %VMM(4), %k4{%k1}
/* Combined zeros from VEC_1 / VEC_2 (search for null term). */
VPMINU %VMM(1), %VMM(2), %VMM(2)
/* Use min to select all zeros from either xor or end of
string). */
VPMINU %VMM(3), %VMM(7), %VMM(3)
VPMINU %VMM(2), %VMM(6), %VMM(2)
/* Combined zeros from VEC_2 / VEC_3 (search for null term). */
VPMINU %VMM(3), %VMM(4), %VMM(4)
/* Combined zeros from VEC_2 / VEC_4 (this has all null term and
esi matches for VEC_2 / VEC_3). */
VPMINU %VMM(2), %VMM(4), %VMM(4)
# else
/* Collect non-matches for VEC_2. */
VPCMP $4, %VMM(2), %VMATCH, %k2
/* Combined zeros from VEC_1 / VEC_2 (search for null term). */
VPMINU %VMM(1), %VMM(2), %VMM(2)
/* Find non-matches in VEC_3/VEC_4 while combining with non-
matches from VEC_1/VEC_2 respectively. */
VPCMP $4, %VMM(3), %VMATCH, %k3{%k1}
VPCMP $4, %VMM(4), %VMATCH, %k4{%k2}
/* Finish combining zeros in all VECs. */
VPMINU %VMM(3), %VMM(4), %VMM(4)
/* Combine in esi matches for VEC_3 (if there was a match with
esi, the corresponding bit in %k3 is zero so the
VPMINU_MASKZ will have a zero in the result). NB: This make
the VPMINU 3c latency. The only way to avoid it is to
create a 12c dependency chain on all the `VPCMP $4, ...`
which has higher total latency. */
VPMINU %VMM(2), %VMM(4), %VMM(4){%k3}{z}
# endif
VPTEST %VMM(4), %VMM(4), %k0{%k4}
KMOV %k0, %VRDX
subq $-(VEC_SIZE * 4), %LOOP_REG
/* TESTZ is inc using the proper register width depending on
CHAR_PER_VEC. An esi match or null-term match leaves a zero-
bit in rdx so inc won't overflow and won't be zero. */
TESTZ (rdx)
jz L(loop_4x_vec)
VPTEST %VMM(1), %VMM(1), %k0{%k1}
KMOV %k0, %VGPR(MASK_GPR)
TESTZ (MASK_GPR)
# if VEC_SIZE == 32
/* We can reuse the return code in page_cross logic for VEC_SIZE
== 32. */
jnz L(last_vec_x1_vec_size32)
# else
jnz L(last_vec_x1_vec_size64)
# endif
/* COND_MASK integrates the esi matches for VEC_SIZE == 64. For
VEC_SIZE == 32 they are already integrated. */
VPTEST %VMM(2), %VMM(2), %k0 COND_MASK(k2)
KMOV %k0, %VRCX
TESTZ (rcx)
jnz L(last_vec_x2)
VPTEST %VMM(3), %VMM(3), %k0 COND_MASK(k3)
KMOV %k0, %VRCX
# if CHAR_PER_VEC == 64
TESTZ (rcx)
jnz L(last_vec_x3)
# else
salq $CHAR_PER_VEC, %rdx
TESTZ (rcx)
orq %rcx, %rdx
# endif
bsfq %rdx, %rdx
# ifndef USE_AS_STRCHRNUL
/* Check if match was CHAR or null. */
cmp (LAST_VEC_OFFSET)(%LOOP_REG, %rdx, CHAR_SIZE), %CHAR_REG
jne L(zero_end)
# endif
/* NB: Multiply sizeof char type (1 or 4) to get the number of
bytes. */
leaq (LAST_VEC_OFFSET)(%LOOP_REG, %rdx, CHAR_SIZE), %rax
ret
# ifndef USE_AS_STRCHRNUL
L(zero_end):
xorl %eax, %eax
ret
# endif
/* Separate return label for last VEC1 because for VEC_SIZE ==
32 we can reuse return code in L(page_cross) but VEC_SIZE ==
64 has mismatched registers. */
# if VEC_SIZE == 64
.p2align 4,, 8
L(last_vec_x1_vec_size64):
bsf %VRCX, %VRCX
# ifndef USE_AS_STRCHRNUL
/* Check if match was null. */
cmp (%rax, %rcx, CHAR_SIZE), %CHAR_REG
jne L(zero_end)
# endif
# ifdef USE_AS_WCSCHR
/* NB: Multiply wchar_t count by 4 to get the number of bytes.
*/
leaq (%rax, %rcx, CHAR_SIZE), %rax
# else
addq %rcx, %rax
# endif
ret
/* Since we can't combine the last 2x matches for CHAR_PER_VEC
== 64 we need return label for last VEC3. */
# if CHAR_PER_VEC == 64
.p2align 4,, 8
L(last_vec_x3):
addq $VEC_SIZE, %LOOP_REG
# endif
/* Duplicate L(last_vec_x2) for VEC_SIZE == 64 because we can't
reuse L(first_vec_x3) due to register mismatch. */
L(last_vec_x2):
bsf %VGPR(MASK_GPR), %VGPR(MASK_GPR)
# ifndef USE_AS_STRCHRNUL
/* Check if match was null. */
cmp (VEC_SIZE * 1)(%LOOP_REG, %MASK_GPR, CHAR_SIZE), %CHAR_REG
jne L(zero_end)
# endif
/* NB: Multiply sizeof char type (1 or 4) to get the number of
bytes. */
leaq (VEC_SIZE * 1)(%LOOP_REG, %MASK_GPR, CHAR_SIZE), %rax
ret
# endif
/* Cold case for crossing page with first load. */
.p2align 4,, 10
# ifndef USE_AS_STRCHRNUL
L(cross_page_boundary):
# endif
L(cross_page_boundary_real):
/* Align rdi. */
xorq %rdi, %rax
VMOVA (PAGE_SIZE - VEC_SIZE)(%rax), %VMM(1)
/* Use high latency method of getting matches to save code size.
*/
/* K1 has 1s where VEC(1) does NOT match esi. */
VPCMP $4, %VMM(1), %VMATCH, %k1
/* K0 has ones where K1 is 1 (non-match with esi), and non-zero
(null). */
VPTEST %VMM(1), %VMM(1), %k0{%k1}
KMOV %k0, %VRAX
/* Remove the leading bits. */
# ifdef USE_AS_WCSCHR
movl %edi, %VGPR_SZ(SHIFT_REG, 32)
/* NB: Divide shift count by 4 since each bit in K1 represent 4
bytes. */
sarl $2, %VGPR_SZ(SHIFT_REG, 32)
andl $(CHAR_PER_VEC - 1), %VGPR_SZ(SHIFT_REG, 32)
/* if wcsrchr we need to reverse matches as we can't rely on
signed shift to bring in ones. There is not sarx for
gpr8/16. Also not we can't use inc here as the lower bits
represent matches out of range so we can't rely on overflow.
*/
xorl $((1 << CHAR_PER_VEC)- 1), %eax
# endif
/* Use arithmetic shift so that leading 1s are filled in. */
sarx %VGPR(SHIFT_REG), %VRAX, %VRAX
/* If eax is all ones then no matches for esi or NULL. */
# ifdef USE_AS_WCSCHR
test %VRAX, %VRAX
# else
inc %VRAX
# endif
jz L(cross_page_continue)
.p2align 4,, 10
L(last_vec_x1_vec_size32):
bsf %VRAX, %VRAX
# ifdef USE_AS_WCSCHR
/* NB: Multiply wchar_t count by 4 to get the number of bytes.
*/
leaq (%rdi, %rax, CHAR_SIZE), %rax
# else
addq %rdi, %rax
# endif
# ifndef USE_AS_STRCHRNUL
/* Check to see if match was CHAR or null. */
cmp (%rax), %CHAR_REG
jne L(zero_end_0)
# endif
ret
# ifndef USE_AS_STRCHRNUL
L(zero_end_0):
xorl %eax, %eax
ret
# endif
END (STRCHR)
#endif
|