1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462
|
/* strnlen/wcsnlen optimized with 256/512-bit EVEX instructions.
Copyright (C) 2022-2025 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <isa-level.h>
#if ISA_SHOULD_BUILD (4)
# include <sysdep.h>
#ifdef USE_AS_WCSLEN
# define VPCMPEQ vpcmpeqd
# define VPTESTN vptestnmd
# define VPMINU vpminud
# define CHAR_SIZE 4
#else
# define VPCMPEQ vpcmpeqb
# define VPTESTN vptestnmb
# define VPMINU vpminub
# define CHAR_SIZE 1
#endif
#define XZERO VMM_128(0)
#define VZERO VMM(0)
#define PAGE_SIZE 4096
#define CHAR_PER_VEC (VEC_SIZE / CHAR_SIZE)
#if CHAR_PER_VEC == 32
# define SUB_SHORT(imm, reg) subb $(imm), %VGPR_SZ(reg, 8)
#else
# define SUB_SHORT(imm, reg) subl $(imm), %VGPR_SZ(reg, 32)
#endif
#ifdef USE_AS_WCSLEN
/* For wide-character, we care more about limitting code size
than optimally aligning targets, so just cap nop padding
reasonably low. */
# define P2ALIGN(...) .p2align 4,, 6
# define P2ALIGN_CLAMPED(...) P2ALIGN(__VA_ARGS__)
#else
# define P2ALIGN(x) .p2align x
# define P2ALIGN_CLAMPED(x, y) .p2align x,, y
#endif
.section SECTION(.text), "ax", @progbits
/* Aligning entry point to 64 byte, provides better performance for
one vector length string. */
ENTRY_P2ALIGN(STRNLEN, 6)
/* rdi is pointer to array, rsi is the upper limit. */
/* Check zero length. */
test %RSI_LP, %RSI_LP
jz L(zero)
#ifdef __ILP32__
/* Clear the upper 32 bits. */
movl %esi, %esi
#endif
vpxorq %XZERO, %XZERO, %XZERO
/* Check that we won't cross a page boundary with our first load. */
movl %edi, %eax
shll $20, %eax
cmpl $((PAGE_SIZE - VEC_SIZE) << 20), %eax
ja L(crosses_page_boundary)
/* Check the first VEC_SIZE bytes. Each bit in K0 represents a
null byte. */
VPCMPEQ (%rdi), %VZERO, %k0
KMOV %k0, %VRCX
/* If src (rcx) is zero, bsf does not change the result. NB:
Must use 64-bit bsf here so that upper bits of len are not
cleared. */
movq %rsi, %rax
bsfq %rcx, %rax
/* If rax > CHAR_PER_VEC then rcx must have been zero (no null
CHAR) and rsi must be > CHAR_PER_VEC. */
cmpq $CHAR_PER_VEC, %rax
ja L(more_1x_vec)
/* Check if first match in bounds. */
cmpq %rax, %rsi
cmovb %esi, %eax
ret
#if VEC_SIZE == 32
P2ALIGN_CLAMPED(4, 2)
L(zero):
L(max_0):
movl %esi, %eax
ret
#endif
P2ALIGN_CLAMPED(4, 10)
L(more_1x_vec):
L(cross_page_continue):
/* After this calculation, rax stores the number of elements
left to be processed The complexity comes from the fact some
elements get read twice due to alignment and we need to be
sure we don't count them twice (else, it would just be rsi -
CHAR_PER_VEC). */
#ifdef USE_AS_WCSLEN
/* Need to compute directly for wcslen as CHAR_SIZE * rsi can
overflow. */
movq %rdi, %rax
andq $(VEC_SIZE * -1), %rdi
subq %rdi, %rax
sarq $2, %rax
leaq -(CHAR_PER_VEC * 1)(%rax, %rsi), %rax
#else
/* Calculate ptr + N - VEC_SIZE, then mask off the low bits,
then subtract ptr to get the new aligned limit value. */
leaq (VEC_SIZE * -1)(%rsi, %rdi), %rax
andq $(VEC_SIZE * -1), %rdi
subq %rdi, %rax
#endif
VPCMPEQ VEC_SIZE(%rdi), %VZERO, %k0
/* Checking here is faster for 256-bit but not 512-bit */
#if VEC_SIZE == 0
KMOV %k0, %VRDX
test %VRDX, %VRDX
jnz L(last_vec_check)
#endif
cmpq $(CHAR_PER_VEC * 2), %rax
ja L(more_2x_vec)
L(last_2x_vec_or_less):
/* Checking here is faster for 512-bit but not 256-bit */
#if VEC_SIZE != 0
KMOV %k0, %VRDX
test %VRDX, %VRDX
jnz L(last_vec_check)
#endif
/* Check for the end of data. */
SUB_SHORT (CHAR_PER_VEC, rax)
jbe L(max_0)
/* Check the final remaining vector. */
VPCMPEQ (VEC_SIZE * 2)(%rdi), %VZERO, %k0
KMOV %k0, %VRDX
test %VRDX, %VRDX
#if VEC_SIZE == 32
jz L(max_0)
#else
jnz L(last_vec_check)
P2ALIGN_CLAMPED(4, 2)
L(zero):
L(max_0):
movl %esi, %eax
ret
#endif
P2ALIGN_CLAMPED(4, 4)
L(last_vec_check):
bsf %VRDX, %VRDX
sub %eax, %edx
lea (%rsi, %rdx), %eax
cmovae %esi, %eax
ret
#if VEC_SIZE == 32
P2ALIGN_CLAMPED(4, 8)
#endif
L(last_4x_vec_or_less):
addl $(CHAR_PER_VEC * -4), %eax
VPCMPEQ (VEC_SIZE * 5)(%rdi), %VZERO, %k0
#if VEC_SIZE == 64
KMOV %k0, %VRDX
test %VRDX, %VRDX
jnz L(last_vec_check)
#endif
subq $(VEC_SIZE * -4), %rdi
cmpl $(CHAR_PER_VEC * 2), %eax
jbe L(last_2x_vec_or_less)
P2ALIGN_CLAMPED(4, 6)
L(more_2x_vec):
/* Remaining length >= 2 * CHAR_PER_VEC so do VEC0/VEC1 without
rechecking bounds. */
/* Already checked in 256-bit case */
#if VEC_SIZE != 0
KMOV %k0, %VRDX
test %VRDX, %VRDX
jnz L(first_vec_x1)
#endif
VPCMPEQ (VEC_SIZE * 2)(%rdi), %VZERO, %k0
KMOV %k0, %VRDX
test %VRDX, %VRDX
jnz L(first_vec_x2)
cmpq $(CHAR_PER_VEC * 4), %rax
ja L(more_4x_vec)
VPCMPEQ (VEC_SIZE * 3)(%rdi), %VZERO, %k0
KMOV %k0, %VRDX
addl $(CHAR_PER_VEC * -2), %eax
test %VRDX, %VRDX
jnz L(last_vec_check)
subb $(CHAR_PER_VEC), %al
jbe L(max_1)
VPCMPEQ (VEC_SIZE * 4)(%rdi), %VZERO, %k0
KMOV %k0, %VRDX
test %VRDX, %VRDX
jnz L(last_vec_check)
L(max_1):
movl %esi, %eax
ret
P2ALIGN_CLAMPED(4, 14)
L(first_vec_x2):
#if VEC_SIZE == 64
/* If VEC_SIZE == 64 we can fit logic for full return label in
spare bytes before next cache line. */
bsf %VRDX, %VRDX
sub %eax, %esi
leal (CHAR_PER_VEC * 1)(%rsi, %rdx), %eax
ret
P2ALIGN_CLAMPED(4, 6)
#else
addl $CHAR_PER_VEC, %esi
#endif
L(first_vec_x1):
bsf %VRDX, %VRDX
sub %eax, %esi
leal (CHAR_PER_VEC * 0)(%rsi, %rdx), %eax
ret
#if VEC_SIZE == 64
P2ALIGN_CLAMPED(4, 6)
L(first_vec_x4):
# if VEC_SIZE == 64
/* If VEC_SIZE == 64 we can fit logic for full return label in
spare bytes before next cache line. */
bsf %VRDX, %VRDX
sub %eax, %esi
leal (CHAR_PER_VEC * 3)(%rsi, %rdx), %eax
ret
P2ALIGN_CLAMPED(4, 6)
# else
addl $CHAR_PER_VEC, %esi
# endif
L(first_vec_x3):
bsf %VRDX, %VRDX
sub %eax, %esi
leal (CHAR_PER_VEC * 2)(%rsi, %rdx), %eax
ret
#endif
P2ALIGN_CLAMPED(6, 20)
L(more_4x_vec):
VPCMPEQ (VEC_SIZE * 3)(%rdi), %VZERO, %k0
KMOV %k0, %VRDX
test %VRDX, %VRDX
jnz L(first_vec_x3)
VPCMPEQ (VEC_SIZE * 4)(%rdi), %VZERO, %k0
KMOV %k0, %VRDX
test %VRDX, %VRDX
jnz L(first_vec_x4)
/* Check if at last VEC_SIZE * 4 length before aligning for the
loop. */
cmpq $(CHAR_PER_VEC * 8), %rax
jbe L(last_4x_vec_or_less)
/* Compute number of words checked after aligning. */
#ifdef USE_AS_WCSLEN
/* Need to compute directly for wcslen as CHAR_SIZE * rsi can
overflow. */
leaq (VEC_SIZE * -3)(%rdi), %rdx
#else
leaq (VEC_SIZE * -3)(%rdi, %rax), %rax
#endif
subq $(VEC_SIZE * -1), %rdi
/* Align data to VEC_SIZE * 4. */
#if VEC_SIZE == 64
/* Saves code size. No evex512 processor has partial register
stalls. If that change this can be replaced with `andq
$-(VEC_SIZE * 4), %rdi`. */
xorb %dil, %dil
#else
andq $-(VEC_SIZE * 4), %rdi
#endif
#ifdef USE_AS_WCSLEN
subq %rdi, %rdx
sarq $2, %rdx
addq %rdx, %rax
#else
subq %rdi, %rax
#endif
// mov %rdi, %rdx
P2ALIGN(6)
L(loop):
/* VPMINU and VPCMP combination provide better performance as
compared to alternative combinations. */
VMOVA (VEC_SIZE * 4)(%rdi), %VMM(1)
VPMINU (VEC_SIZE * 5)(%rdi), %VMM(1), %VMM(2)
VMOVA (VEC_SIZE * 6)(%rdi), %VMM(3)
VPMINU (VEC_SIZE * 7)(%rdi), %VMM(3), %VMM(4)
VPTESTN %VMM(2), %VMM(2), %k0
VPTESTN %VMM(4), %VMM(4), %k1
subq $-(VEC_SIZE * 4), %rdi
KORTEST %k0, %k1
jnz L(loopend)
subq $(CHAR_PER_VEC * 4), %rax
ja L(loop)
mov %rsi, %rax
ret
#if VEC_SIZE == 32
P2ALIGN_CLAMPED(4, 6)
L(first_vec_x4):
# if VEC_SIZE == 64
/* If VEC_SIZE == 64 we can fit logic for full return label in
spare bytes before next cache line. */
bsf %VRDX, %VRDX
sub %eax, %esi
leal (CHAR_PER_VEC * 3)(%rsi, %rdx), %eax
ret
P2ALIGN_CLAMPED(4, 6)
# else
addl $CHAR_PER_VEC, %esi
# endif
L(first_vec_x3):
bsf %VRDX, %VRDX
sub %eax, %esi
leal (CHAR_PER_VEC * 2)(%rsi, %rdx), %eax
ret
#endif
P2ALIGN_CLAMPED(4, 11)
L(loopend):
/* We found a null terminator in one of the 4 vectors. */
/* Check the first vector. */
movq %rax, %r8
VPTESTN %VMM(1), %VMM(1), %k2
KMOV %k2, %VRCX
bsf %rcx, %r8
cmpq $(CHAR_PER_VEC), %r8
jbe L(end_vec)
/* Check the second vector. */
subq $(CHAR_PER_VEC), %rax
movq %rax, %r8
KMOV %k0, %VRCX
bsf %rcx, %r8
cmpq $(CHAR_PER_VEC), %r8
jbe L(end_vec)
/* Check the third vector. */
subq $(CHAR_PER_VEC), %rax
movq %rax, %r8
VPTESTN %VMM(3), %VMM(3), %k2
KMOV %k2, %VRCX
bsf %rcx, %r8
cmpq $(CHAR_PER_VEC), %r8
jbe L(end_vec)
/* It is in the fourth vector. */
subq $(CHAR_PER_VEC), %rax
movq %rax, %r8
KMOV %k1, %VRCX
bsf %rcx, %r8
P2ALIGN_CLAMPED(4, 3)
L(end_vec):
/* Get the number that has been processed. */
movq %rsi, %rcx
subq %rax, %rcx
/* Add that to the offset we found the null terminator at. */
leaq (%r8, %rcx), %rax
/* Take the min of that and the limit. */
cmpq %rsi, %rax
cmovnb %rsi, %rax
ret
P2ALIGN_CLAMPED(4, 11)
L(crosses_page_boundary):
/* Align data backwards to VEC_SIZE. */
shrl $20, %eax
movq %rdi, %rcx
andq $-VEC_SIZE, %rcx
VPCMPEQ (%rcx), %VZERO, %k0
KMOV %k0, %VRCX
#ifdef USE_AS_WCSLEN
shrl $2, %eax
andl $(CHAR_PER_VEC - 1), %eax
#endif
/* By this point rax contains number of bytes we need to skip. */
shrx %VRAX, %VRCX, %VRCX
/* Calculates CHAR_PER_VEC - eax and stores in eax. */
negl %eax
andl $(CHAR_PER_VEC - 1), %eax
movq %rsi, %rdx
bsf %VRCX, %VRDX
cmpq %rax, %rdx
ja L(cross_page_continue)
/* The vector had a null terminator or we are at the limit. */
movl %edx, %eax
cmpq %rdx, %rsi
cmovb %esi, %eax
ret
END(STRNLEN)
#endif
|