1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444
|
#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <assert.h>
#define swapValue(K, i, j) t=K[i], K[i] = K[j], K[j] = (float) t
#define swapVector(U, i, j) swapValue(U[0], i, j); swapValue(U[1], i, j); swapValue(U[2], i, j)
static void
printMatrix(const char *title, const float m[3][3])
{
int i, j;
printf("%s:\n", title);
for (i=0; i<3; i++) {
for (j=0; j<3; j++) {
printf("%12.4f ", m[i][j]);
}
printf("\n");
}
}
static void
normalizeColumns( float a[3][3])
{
int i;
for ( i=0; i<3; i++) {
float rlen = 1.0f / (a[0][i] * a[0][i] +
a[1][i] * a[1][i] +
a[2][i] * a[2][i]);
a[0][i] *= rlen;
a[1][i] *= rlen;
a[2][i] *= rlen;
}
}
// OffD[] exploits the symmetry of S[][].
static void eigenVectors (const float S[3][3], float U[3][3], float K[3])
{
#define LOSSY_OPTIMIZATIONS 0 // gets about 5%, might affect results
#if LOSSY_OPTIMIZATIONS
// XX How can we generate the single-precision fabs Intel instruction?
float OffD[3], sm, g, h, fabsh, fabsOffDi, t, theta;
float c, s, tau, ta, OffDq, a, b;
#else
double OffD[3], sm, g, h, fabsh, fabsOffDi, t, theta;
double c, s, tau, ta, OffDq, a, b;
#endif
int sweep, i, j, p, q;
static int ncount = 0;
static int mod3[] = { 0, 1, 2, 0, 1, 2};
for (i = 0; i < 3; i++) {
U[i][i] = 1.0f;
K[i] = S[i][i];
OffD[i] = S[mod3[i + 1]][mod3[i + 2]];
for (j = i + 1; j < 3; j++) {
U[i][j] = U[j][i] = 0.0f;
}
}
for (sweep = 25; sweep > 0; sweep--) {
sm = fabs(OffD[0]) + fabs(OffD[1]) + fabs(OffD[2]);
if (sm == 0.0f) break;
for (i = 2; i >= 0; i--) {
p = mod3[i + 1];
q = mod3[i + 2];
fabsOffDi = fabs(OffD[i]);
g = (float) (100.0 * fabsOffDi);
if (fabsOffDi > 0.0) {
h = K[q] - K[p];
fabsh = fabs(h);
if (fabsh + g == fabsh) {
t = OffD[i] / h;
} else {
theta = 0.5 * h / OffD[i];
t = 1.0 / (fabs(theta) + sqrt(theta * theta + 1.0));
if (theta < 0) t = -t;
}
c = 1.0 / sqrt(t * t + 1);
s = t * c;
tau = s / (c + 1);
ta = t * OffD[i];
OffD[i] = 0.0;
K[p] -= (float) ta;
K[q] += (float) ta;
OffDq = OffD[q];
OffD[q] -= s * (OffD[p] + tau * OffD[q]);
OffD[p] += s * (OffDq - tau * OffD[p]);
for (j = 2; j >= 0; j--) {
a = U[j][p];
b = U[j][q];
U[j][p] -= (float) (s * (b + tau * a));
U[j][q] += (float) (s * (a - tau * b));
}
}
}
}
// printMatrix("\nCovariance Matrix", S);
#define TRUE_COVARIANCE 1
#if TRUE_COVARIANCE
/*
* Sort eigen values into decreasing absolute order. When this is done, make sure
* that eigen vectors are swapped as well.
*/
if (fabs(K[0]) < fabs(K[1])) { swapValue(K, 0, 1); swapVector(U, 0, 1); }
if (fabs(K[0]) < fabs(K[2])) { swapValue(K, 0, 2); swapVector(U, 0, 2); }
if (fabs(K[1]) < fabs(K[2])) { swapValue(K, 1, 2); swapVector(U, 1, 2); }
/*
* Normalize so that the transpose will also be the inverse.
*/
normalizeColumns( U);
#else
/* Eigen values can't be negative */
// assert( K[0] >= 0.0f);
// assert( K[1] >= 0.0f);
// assert( K[2] >= 0.0f);
if (K[0] < 0.0f) K[0] = 0.0f;
if (K[1] < 0.0f) K[1] = 0.0f;
if (K[2] < 0.0f) K[2] = 0.0f;
/*
* Sort eigen values into decreasing order. When this is done, make sure
* that eigen vectors are swapped as well.
*/
if (K[0] < K[1]) { swapValue(K, 0, 1); swapVector(U, 0, 1); }
if (K[0] < K[2]) { swapValue(K, 0, 2); swapVector(U, 0, 2); }
if (K[1] < K[2]) { swapValue(K, 1, 2); swapVector(U, 1, 2); }
#endif
#if 0
/*
* Make the first column of eigenvectors positive.
* XXX Shouldn't it be the first *row* made positive?
*/
for (i=0; i<3; i++) {
if (U[i][0] < 0.0f)
for (j=0; j<3; j++)
U[i][j] *= -1.0f;
}
#endif
#if 0
printf("EivenValues: %8.2f %8.2f %8.2f\n", K[0], K[1], K[2]);
printMatrix("Eigen Vectors ", U);
#endif
}
/* Create a 3x3 covariance matrix from a given nx3 data matrix */
static void
covariance(int n, float data[][3], float mean[3], float cov[3][3])
{
int i, j, k;
/* Now compute cov[3][3] = Transpose(data[n][3]) * data[n][3] */
for (i=0; i<3; i++) {
for (j=i; j<3; j++) {
cov[i][j] = 0.0f;
}
}
for (k=0; k<n; k++) {
cov[0][0] += data[k][0] * data[k][0];
cov[0][1] += data[k][0] * data[k][1];
cov[0][2] += data[k][0] * data[k][2];
cov[1][1] += data[k][1] * data[k][1];
cov[1][2] += data[k][1] * data[k][2];
cov[2][2] += data[k][2] * data[k][2];
}
#if TRUE_COVARIANCE
cov[0][0] -= mean[0] * mean[0] * n;
cov[0][1] -= mean[0] * mean[1] * n;
cov[0][2] -= mean[0] * mean[2] * n;
cov[1][1] -= mean[1] * mean[1] * n;
cov[1][2] -= mean[1] * mean[2] * n;
cov[2][2] -= mean[2] * mean[2] * n;
cov[0][0] /= n-1;
cov[0][1] /= n-1;
cov[0][2] /= n-1;
cov[1][1] /= n-1;
cov[1][2] /= n-1;
cov[2][2] /= n-1;
#endif
for (i=0; i<3; i++) {
for (j=i; j<3; j++) {
cov[j][i] = cov[i][j];
}
}
// printMatrix("\n\n--------Covariance matrix:", cov);
}
#if 0
static char *progname = NULL;
static char *filename = NULL;
void
usage()
{
fprintf(stderr, "Usage: %s [filename with 3 components per row]\n");
exit(0);
}
int
main(int argc, char **argv)
{
int n, maxn;
float *data, cov[3][3], evectors[3][3], evalues[3];
FILE *stream;
progname = *argv++; argc--;
filename = *argv++; argc--;
if (filename) {
printf("Filename = %s\n", filename);
stream = fopen(filename, "r");
if (stream == NULL) usage();
} else {
stream = stdin;
}
n = 0;
maxn = 10;
data = (float *) malloc(3 * maxn * sizeof(float));
while (1) {
if (fscanf(stream, "%f %f %f",
&data[3*n + 0], &data[3*n+1], &data[3*n+2]) != 3) break;
n++;
if (n >= maxn) {
maxn += 10;
printf("Realloc'ing data, maxn = %d\n", maxn);
data = (float *) realloc(data, 3 * maxn * sizeof(float));
if (data == NULL) {
fprintf(stderr, "Couldn't realloc!\n");
exit(0);
}
}
}
for (maxn = 0; maxn < n; maxn++) {
printf("Row %5d: %8.0f %8.0f %8.0f\n",
maxn, data[3*maxn+0], data[3*maxn+1], data[3*maxn+2]);
}
covariance(n, (float (*)[3]) data, cov);
eigenVectors(cov, evectors, evalues);
}
#endif
// computes idata[]*m[][]
void
eigenProject( int n, float *idata, float mean[3], float m[3][3], float *odata)
{
int i, j;
for (i=0; i<n; i++) {
float tdata[3]; // temporary space.
// XX MSVC doesn't unroll loops!?
for (j=0; j<3; j++) {
tdata[j] = ((idata[0]-mean[0]) * m[0][j])
+ ((idata[1]-mean[1]) * m[1][j])
+ ((idata[2]-mean[2]) * m[2][j]);
}
// This is necessary in case idata == odata
for (j=0; j<3; j++) {
odata[i*3+j] = tdata[j];
}
idata += 3;
}
}
void
eigenSpace(int n, float *data, float mean[3], float evectors[3][3], float evalues[3])
{
float cov[3][3];
covariance(n, (float (*)[3]) data, mean, cov);
eigenVectors((const float (*)[3])cov, evectors, evalues);
}
/*
* Given an input vector input[n][3], this routine computes various
* statistics using the eigen Transform.
*/
#define NCOMPONENTS 3
void
eigenStatistics(
int n,
const float input[][3],
float evalues[3],
float output[][3], // after transformation to eigenspace
float lo[3][3], // lo and hi colors for each evector
float hi[3][3],
float avg[3], // this is the mean value of this block
float min[3], // min and max values for each evector
float max[3],
float errs[3] // max error incurred when dropping each evector
)
{
float evectors[NCOMPONENTS][3]; // each eigenvector occupies a *column*.
int i, j;
if (n < 1) {
fprintf(stderr, "Bad n: %d (File %s)\n", n, __FILE__);
exit(0);
}
#if TRUE_COVARIANCE
// Compute averages of each component
for (j = 0; j < NCOMPONENTS; j++)
avg[j] = 0.0f;
for (i=0; i<n; i++) {
for (j=0; j < NCOMPONENTS; j++) {
avg[j] += input[i][j];
}
}
for (j = 0; j < NCOMPONENTS; j++)
avg[j] = avg[j] / n;
#endif
// output[i][j] = mean removed input[i][j]
for (i=0; i<n; i++) {
for (j = 0; j < NCOMPONENTS; j++) {
output[i][j] = input[i][j] ; // - avg[j];
}
}
// Compute eigenValues, eigenVectors
eigenSpace(n, (float*) output, avg, evectors, (float*) evalues);
// Project to eigenSpace
eigenProject(n, (float*) output, avg, evectors, (float*) output);
// Find min and max values over the projections of all colors into eigen space
// Since scale of each eigenvector is arbitrary, so is scale of each min/max pair,
// unless our particular eigenSpace() routine offers some special guarantee.
for (j = 0; j < NCOMPONENTS; j++) {
min[j] = max[j] = output[0][j];
}
for (i = 1; i < n; i++) {
if (min[0] > output[i][0]) min[0] = output[i][0];
if (max[0] < output[i][0]) max[0] = output[i][0];
if (min[1] > output[i][1]) min[1] = output[i][1];
if (max[1] < output[i][1]) max[1] = output[i][1];
if (min[2] > output[i][2]) min[2] = output[i][2];
if (max[2] < output[i][2]) max[2] = output[i][2];
}
// Find lo and hi values for each eigenVector
// XX This apparently accomplishes some sort of back-projection of the axis-aligned
// eigen space bounding box to color space, where it will not in general be axis-aligned.
// (lo[0] and hi[0] are used as end-point colors in interpolation modes)
for (i = 0; i < 3; i++) { // selects an eigen vector, and an axis in eigen space
for (j = 0; j < NCOMPONENTS; j++) { // selects an axis of the eigen vector
lo[i][j] = evectors[j][i] * min[i] + avg[j];
hi[i][j] = evectors[j][i] * max[i] + avg[j];
}
}
// Compute MAX abs(spread) over all colors for each eigen vector
// For the second and third eigen vectors, in an interpolation mode,
// this really does bound the color space error.
for (i=0; i<3; i++) { // selects an eigen vector
errs[i] = 0.0f;
for (j = 0; j < NCOMPONENTS; j++) { // selects a color
float e;
e = lo[i][j] - hi[i][j];
if (e < 0.0f)
e = -e;
if (errs[i] < e)
errs[i] = e; // MAX
}
}
}
void
printStatistics(
int n,
const float input[][3],
float output[][3], // after transformation to eigenspace
float lo[3][3], // lo and hi colors for each evector
float hi[3][3],
float avg[3], // this is the mean value of this block
float min[3], // min and max values for each evector
float max[3],
float err[3], // max error incurred when dropping each evector
char *title
)
{
int i;
if (title) {
fprintf(stdout, "%s", title);
}
if (input) {
fprintf(stdout, "Input Vector:\n");
for (i=0; i<n; i++) {
fprintf(stdout, "[%4.0f %4.0f %4.0f] ",
input[i][0], input[i][1], input[i][2]);
if ((i % 4) == 3) fprintf(stdout, "\n");
}
}
if (output) {
fprintf(stdout, "Output Vector:\n");
for (i=0; i<n; i++) {
fprintf(stdout, "[%4.0f %4.0f %4.0f] ",
output[i][0], output[i][1], output[i][2]);
if ((i % 4) == 3) fprintf(stdout, "\n");
}
}
#ifdef notdef
for (i=0; i<3; i++) {
fprintf(stdout,
"V%d: [%4.0f %4.0f %4.0f] - [%4.0f %4.0f %4.0f] [%4.0f %4.0f %6.2f]\n",
i,
lo[i][0] + avg[0], lo[i][1] + avg[1], lo[i][2] + avg[2],
hi[i][0] + avg[0], hi[i][1] + avg[1], hi[i][2] + avg[2],
min[i], max[i], err[i]);
}
#endif
}
|