1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264
|
/*
** Copyright (c) 1995, 3Dfx Interactive, Inc.
** All Rights Reserved.
**
** This is UNPUBLISHED PROPRIETARY SOURCE CODE of 3Dfx Interactive, Inc.;
** the contents of this file may not be disclosed to third parties, copied or
** duplicated in any form, in whole or in part, without the prior written
** permission of 3Dfx Interactive, Inc.
**
** RESTRICTED RIGHTS LEGEND:
** Use, duplication or disclosure by the Government is subject to restrictions
** as set forth in subdivision (c)(1)(ii) of the Rights in Technical Data
** and Computer Software clause at DFARS 252.227-7013, and/or in similar or
** successor clauses in the FAR, DOD or NASA FAR Supplement. Unpublished -
** rights reserved under the Copyright Laws of the United States.
**
** $Revision: 1.1.1.1 $
** $Date: 2000/08/03 00:27:20 $
*/
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include "texusint.h"
/*
* For resampling in the x direction:
* Assume ix input pixels become ox output pixels.
* Imagine that ix input pixels are each divided into ox fragments, for a total
* of ix * ox fragments.
* Imagine also that ox output pixels are each divided into ix fragments, for a
* total of ox * ix fragments, same as before.
* Initialize an accumulator to 0. Add the first input pixel, multiplied by ox
* the number of fragments per input pixel. Keep track of the number of
* fragments in the accumulator; when this is >= ix, (the number of fragments
* it takes to make an output pixel), multiply the accumulator by
*/
static void
_txResampleX(FxU32 *out, const FxU32 *in, int ox, int ix)
{
FxU32 accr, accg, accb, acca, r, g, b, a;
int i, accf, o, nf;
// printf("\n");
accf = accr = accg = accb = acca = o = 0;
for (i=0; i<ix; i++) {
a = (in[i] & 0xff000000) >> 24;
r = (in[i] & 0x00ff0000) >> 16;
g = (in[i] & 0x0000ff00) >> 8;
b = (in[i] & 0x000000ff) ;
// Each input pixel brings ox fragments
nf = ox;
while ((accf + nf) >= ix) {
int ef;
int oa, or, og, ob;
// Yes, we have (possibly more than) enough to generate an output
// pixel. Of the nf new fragments, use up enough to generate an
// output pixel.
ef = ix - accf; // the excessive # of fragments.
// printf("New: accf = %3d, nf = %3d, ef = %3d, ix = %3d, ox = %3d\n",
// accf, nf, ef, ix, ox);
acca += a * ef;
accr += r * ef;
accg += g * ef;
accb += b * ef;
oa = acca / ix;
or = accr / ix;
og = accg / ix;
ob = accb / ix;
if( (oa < 0) || (oa > 255) ||
(or < 0) || (or > 255) ||
(og < 0) || (og > 255) ||
(ob < 0) || (ob > 255) ) {
printf(" %d %d %d %d\n" , oa, or, og, ob);
txPanic("ARGB: out of range\n");
}
*out++ = (oa << 24) | (or << 16) | (og << 8) | ob;
// printf("Output pixel %4d: %.02x %.02x %.02x %.02x\n",
// o, oa, or, og, ob);
o++;
acca = accr = accg = accb = accf = 0;
nf -= ef;
}
// If there's any fragments left over, accumulate them.
if (nf) {
acca += a * nf;
accr += r * nf;
accg += g * nf;
accb += b * nf;
accf += nf;
// printf("i= %4d, accf = %4d, aa=%.06x, ar=%.06x, ag=%.06x, ab=%.06x\n",
// i, accf, acca, accr, accg, accb);
}
}
if (accf != 0) {
txPanic("Row resampling: accf != 0!\n");
}
}
static FxU32 AccA[MAX_TEXWIDTH];
static FxU32 AccR[MAX_TEXWIDTH];
static FxU32 AccG[MAX_TEXWIDTH];
static FxU32 AccB[MAX_TEXWIDTH];
static FxU32 argb[MAX_TEXWIDTH];
static void
_txImgResample(FxU32 *out, int ox, int oy,
const FxU32 *in, int ix, int iy)
{
int r, g, b, a;
int i, j, accf, o, nf;
for (i=0; i<ox; i++) AccA[i] = AccR[i] = AccG[i] = AccB[i] = 0;
accf = 0;
o = 0;
for (i=0; i<iy; i++) {
// Resample a row of input into temporary array.
// printf("Resampling input row %4d\n", i);
_txResampleX( argb, in, ox, ix);
in += ix;
// This row brings in oy fragments per scanline.
nf = oy;
while ((accf + nf) >= iy) {
int ef;
// Yes, we have (possibly more than) enough to generate an output
// pixel. Of the nf new fragments, use up enough to generate an
// output pixel.
ef = iy - accf; // the excessive # of fragments.
// Accumulate input * ef + acc, and generate a line of output.
for (j=0; j<ox; j++) {
a = (argb[j] & 0xff000000) >> 24;
r = (argb[j] & 0x00ff0000) >> 16;
g = (argb[j] & 0x0000ff00) >> 8;
b = (argb[j] & 0x000000ff) ;
AccA[j] += a * ef;
AccR[j] += r * ef;
AccG[j] += g * ef;
AccB[j] += b * ef;
a = AccA[j] / iy;
r = AccR[j] / iy;
g = AccG[j] / iy;
b = AccB[j] / iy;
if( (a < 0) || (a > 255) ||
(r < 0) || (r > 255) ||
(g < 0) || (g > 255) ||
(b < 0) || (b > 255) ) {
printf(" %d %d %d %d\n" , a, r, g, b);
txPanic("ARGB: out of range\n");
}
out[j] = (a << 24) | (r << 16) | (g << 8) | b;
AccA[j] = 0;
AccR[j] = 0;
AccG[j] = 0;
AccB[j] = 0;
}
out += ox;
accf = 0;
nf -= ef;
// printf("[%4d] Generating output row %4d\n", i, o);
o++;
}
// If there's any fragments left over, accumulate them.
if (nf) {
for (j=0; j<ox; j++) {
a = (argb[j] & 0xff000000) >> 24;
r = (argb[j] & 0x00ff0000) >> 16;
g = (argb[j] & 0x0000ff00) >> 8;
b = (argb[j] & 0x000000ff) ;
AccA[j] += a * nf;
AccR[j] += r * nf;
AccG[j] += g * nf;
AccB[j] += b * nf;
}
accf += nf;
// printf("i= %4d, accf = %4d\n", i, accf);
}
}
if (accf != 0) {
txPanic("Img resampling: accf != 0!\n");
}
// Ideally, accf must be 0 now.
// printf("Finally: accf = %d\n", accf);
}
void
txMipResample(TxMip *destMip, TxMip *srcMip)
{
int i, sw, sh, dw, dh;
if ((destMip->width > MAX_TEXWIDTH) || (destMip->height > MAX_TEXWIDTH)) {
txPanic("Bad width/height in txImageResize()\n");
}
if ((srcMip->format != GR_TEXFMT_ARGB_8888) ||
(destMip->format != GR_TEXFMT_ARGB_8888)) {
txPanic("Bad image format in txMipResample.");
}
if ((srcMip->width == destMip->width) && (srcMip->height == destMip->height) &&
(srcMip->data[0] == destMip->data[0])) {
if( txVerbose )
printf("No Resampling necessary.\n");
return;
}
if ((srcMip->data[0] == NULL) || (destMip->data[0] == NULL))
txPanic("txImageResize: Null buffer\n");
if( txVerbose )
printf("Resampling to %dx%d: ", destMip->width, destMip->height);
sw = srcMip->width;
sh = srcMip->height;
dw = destMip->width;
dh = destMip->height;
for (i=0; i< srcMip->depth; i++) {
if(!destMip->data[i])
txPanic("txImageResize: no miplevel present\n");
_txImgResample (destMip->data[i], dw, dh,
srcMip->data[i], sw, sh);
if( txVerbose )
{
printf(" %dx%d", sw, sh); fflush(stdout);
}
if (sw > 1) sw >>= 1;
if (sh > 1) sh >>= 1;
if (dw > 1) dw >>= 1;
if (dh > 1) dh >>= 1;
}
if( txVerbose )
printf(".\n");
}
|