1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
|
/* Copyright (c) 1994 Sun Wu, Udi Manber, Burra Gopal. All Rights Reserved. */
/* the functions in this file parse a string that represents
a regular expression, and return a pointer to a syntax
tree for that regular expression. */
#include <stdio.h>
#include "re.h"
#define FALSE 0
#define TRUE 1
#define NextChar(s) *(*s)++
#define Unexpected(s, c) (**s == NUL || **s == c)
#define Invalid_range(x, y) (x == NUL || x == '-' || x == ']' || x < y)
extern Stack Push();
extern Re_node Pop();
extern Re_node Top();
extern int Size();
extern Pset pset_union();
extern Pset create_pos();
extern void free_re();
int final_pos, pos_cnt = 0;
/* retract_token() moves the string pointer back, effectively "unseeing"
the last character seen. It is used only to retract a right paren --
the idea is that the incarnation of parse_re() that saw the corresponding
left paren is supposed to take care of matching the right paren. This
is necessary to prevent recursive calls from mistakenly eating up someone
else's right parens. */
#define retract_token(s) --(*s)
/* mk_leaf() creates a leaf node that is (usually) a literal node. */
Re_node mk_leaf(opval, type, ch, cset)
short opval, type;
char ch;
Ch_Set cset;
{
Re_node node;
Re_Lit l;
new_node(Re_Lit, l, l);
new_node(Re_node, node, node);
if (l == NULL || node == NULL) {
if (l != NULL) free(l);
if (node != NULL) free(node);
return NULL;
}
lit_type(l) = type;
lit_pos(l) = pos_cnt++;
if (type == C_SET) lit_cset(l) = cset;
else lit_char(l) = ch; /* type == C_LIT */
Op(node) = opval;
Lit(node) = l;
Nullable(node) = FALSE;
Firstpos(node) = create_pos(lit_pos(l));
Lastpos(node) = Firstpos(node);
return node;
}
/* parse_cset() takes a pointer to a pointer to a string and parses
a prefix of it denoting a character set literal. It returns a pointer
to a Re_node node, NULL if there is an error. */
Re_node parse_cset(s)
char **s;
{
Ch_Set cs_ptr, curr_ptr, prev_ptr;
char ch;
Ch_Range range = NULL;
if (Unexpected(s, ']')) return NULL;
new_node(Ch_Set, curr_ptr, curr_ptr);
cs_ptr = curr_ptr;
while (!Unexpected(s, ']')) {
new_node(Ch_Range, range, range);
curr_ptr->elt = range;
ch = NextChar(s);
if (ch == '-') {
free(range);
free(curr_ptr);
return NULL; /* invalid range */
}
range->low_bd = ch;
if (**s == NUL) {
free(range);
free(curr_ptr);
return NULL;
}
else if (**s == '-') { /* character range */
(*s)++;
if (Invalid_range(**s, ch)) {
free(range);
free(curr_ptr);
return NULL;
}
else range->hi_bd = NextChar(s);
}
else range->hi_bd = ch;
prev_ptr = curr_ptr;
new_node(Ch_Set, curr_ptr, curr_ptr);
prev_ptr->rest = curr_ptr;
};
if (**s == ']') {
prev_ptr->rest = NULL;
return mk_leaf(LITERAL, C_SET, NUL, cs_ptr);
}
else {
if (range != NULL) free(range);
free(curr_ptr);
return NULL;
}
} /* parse_cset */
/* parse_wildcard() "parses" a wildcard -- a wildcard is treated as a
character range whose values span all ASCII values. parse_wildcard()
creates a node representing such a range. */
Re_node parse_wildcard()
{
Ch_Set s;
Ch_Range r;
new_node(Ch_Range, r, r);
r->low_bd = ASCII_MIN; /* smallest ASCII value */
r->hi_bd = ASCII_MAX; /* greatest ASCII value */
new_node(Ch_Set, s, s);
s->elt = r;
s->rest = NULL;
return mk_leaf(LITERAL, C_SET, NUL, s);
}
/* parse_chlit() parses a character literal. It is assumed that the
character in question does not have any special meaning. It returns
a pointer to a node for that literal. */
Re_node parse_chlit(ch)
char ch;
{
if (ch == NUL) return NULL;
else return mk_leaf(LITERAL, C_LIT, ch, NULL);
}
/* routine to free the malloced token */
void free_tok(next_token)
Tok_node next_token;
{
if (next_token == NULL) return;
switch (tok_type(next_token)) {
case LITERAL:
free_re(tok_val(next_token));
case EOS:
case RPAREN:
case LPAREN:
case OPSTAR:
case OPALT:
case OPOPT:
default:
free(next_token);
break;
}
}
/* get_token() returns the next token -- this may be a character
literal, a character set, an escaped character, a punctuation (i.e.
parenthesis), or an operator. It traverses the character string
representing the RE, given by a pointer s; leaves s positioned
immediately after the unit it parsed, and returns a pointer to
a token node for that unit. */
Tok_node get_token(s)
char **s;
{
Tok_node rn = NULL;
if (s == NULL || *s == NULL) return NULL; /* error */
new_node(Tok_node, rn, rn);
if (**s == NUL) tok_type(rn) = EOS; /* end of string */
else {
switch (**s) {
case '.': /* wildcard */
tok_type(rn) = LITERAL;
tok_val(rn) = parse_wildcard();
if (tok_val(rn) == NULL) {
free_tok(rn);
return NULL;
}
break;
case '[': /* character set literal */
(*s)++;
tok_type(rn) = LITERAL;
tok_val(rn) = parse_cset(s);
if (tok_val(rn) == NULL) {
free_tok(rn);
return NULL;
}
break;
case '(':
tok_type(rn) = LPAREN;
break;
case ')' :
tok_type(rn) = RPAREN;
break;
case '*' :
tok_type(rn) = OPSTAR;
break;
case '|' :
tok_type(rn) = OPALT;
break;
case '?' :
tok_type(rn) = OPOPT;
break;
case '\\': /* escaped character */
(*s)++;
default : /* must be ordinary character */
tok_type(rn) = LITERAL;
tok_val(rn) = parse_chlit(**s);
if (tok_val(rn) == NULL) {
free_tok(rn);
return NULL;
}
break;
} /* switch (**s) */
(*s)++;
} /* else */
return rn;
}
/* cat2() takes a stack of RE-nodes and, if the stack contains
more than one node, returns the stack obtained by condensing
the top two nodes of the stack into a single CAT-node. If there
is only one node on the stack, nothing is done. */
Stack cat2(stk)
Stack *stk;
{
Re_node r;
if (stk == NULL) return NULL;
if (*stk == NULL || (*stk)->next == NULL) return *stk;
new_node(Re_node, r, r);
if (r == NULL) return NULL; /* can't allocate memory */
Op(r) = OPCAT;
Rchild(r) = Pop(stk);
Lchild(r) = Pop(stk);
if (Push(stk, r) == NULL) {
free_re(Rchild(r));
free_re(Lchild(r));
free(r);
return NULL;
}
Nullable(r) = Nullable(Lchild(r)) && Nullable(Rchild(r));
if (Nullable(Lchild(r)))
Firstpos(r) = pset_union(Firstpos(Lchild(r)), Firstpos(Rchild(r)), 0);
else Firstpos(r) = pset_union(Firstpos(Lchild(r)), NULL, 0); /* added pset_union with NULL 26/Aug/1996 */
if (Nullable(Rchild(r)))
Lastpos(r) = pset_union(Lastpos(Lchild(r)), Lastpos(Rchild(r)), 0);
else Lastpos(r) = pset_union(Lastpos(Rchild(r)), NULL, 0); /* added pset_union with NULL 26/Aug/1996 */
return *stk;
}
/* wrap() takes a stack and an operator, takes the top element of the
stack and "wraps" that operator around it, then puts this back on the
stack and returns the resulting stack. */
Stack wrap(s, opv)
Stack *s;
short opv;
{
Re_node r;
if (s == NULL || *s == NULL) return NULL;
new_node(Re_node, r, r);
if (r == NULL) return NULL;
Op(r) = opv;
Child(r) = Pop(s);
if (Push(s, r) == NULL) {
free_re(Child(r));
free(r);
return NULL;
}
Nullable(r) = TRUE;
Firstpos(r) = pset_union(Firstpos(Child(r)), NULL, 0); /* added pset_union with NULL 26/Aug/1996 */
Lastpos(r) = pset_union(Lastpos(Child(r)), NULL, 0); /* added pset_union with NULL 26/Aug/1996 */
return *s;
}
/* mk_alt() takes a stack and a regular expression, creates an ALT-node
from the top of the stack and the given RE, and replaces the top-of-stack
by the resulting ALT-node. */
Stack mk_alt(s, r)
Stack *s;
Re_node r;
{
Re_node node;
if (s == NULL || *s == NULL || r == NULL) return NULL;
new_node(Re_node, node, node);
if (node == NULL) return NULL;
Op(node) = OPALT;
Lchild(node) = Pop(s);
Rchild(node) = r;
if (Push(s, node) == NULL) return NULL;
Nullable(node) = Nullable(Lchild(node)) || Nullable(Rchild(node));
Firstpos(node) = pset_union(Firstpos(Lchild(node)), Firstpos(Rchild(node)), 0);
Lastpos(node) = pset_union(Lastpos(Lchild(node)), Lastpos(Rchild(node)), 0);
return *s;
}
/* parse_re() takes a pointer to a string and traverses that string,
returning a pointer to a syntax tree for the regular expression
represented by that string, NULL if there is an error. */
Re_node parse_re(s, end)
char **s;
short end;
{
Stack stk = NULL, ret = NULL, top, temp;
Tok_node next_token, t1;
Re_node re = NULL, val;
if (s == NULL || *s == NULL) return NULL;
while (TRUE) {
ret = NULL;
if ((next_token = get_token(s)) == NULL) return NULL;
switch (tok_type(next_token)) {
case RPAREN:
retract_token(s);
case EOS:
if (end == tok_type(next_token)) {
free_tok(next_token);
top = cat2(&stk);
val = Top(top);
free(top);
return val;
}
else {
free_tok(next_token);
return NULL;
}
case LPAREN:
free_tok(next_token);
re = parse_re(s, RPAREN);
if ((ret = Push(&stk, re)) == NULL) {
free_re(re); /* ZZZZZZZZZZZZZZZZZZ */
return NULL;
}
if ((t1 = get_token(s)) == NULL) {
free_re(re); /* ZZZZZZZZZZZZZZZZZZ */
free(ret);
return NULL;
}
if ((tok_type(t1) != RPAREN) || (re == NULL)) {
free_re(re); /* ZZZZZZZZZZZZZZZZZZ */
free(ret);
free_tok(t1);
return NULL;
}
free_tok(t1);
if (Size(stk) > 2) {
temp = stk->next;
stk->next = cat2(&temp); /* condense CAT nodes */
if (stk->next == NULL) {
free_re(re); /* ZZZZZZZZZZZZZZZZZZ */
free(ret);
return NULL;
}
else stk->size = stk->next->size + 1;
}
break;
case OPSTAR:
if ((ret = wrap(&stk, OPSTAR)) == NULL) {
free_tok(next_token);
return NULL;
}
free_tok(next_token); /* ZZZZZZZZZZZZZZZZZZ */
break;
case OPOPT:
if ((ret = wrap(&stk, OPOPT)) == NULL) {
free_tok(next_token);
return NULL;
}
free_tok(next_token); /* ZZZZZZZZZZZZZZZZZZ */
break;
case OPALT:
if ((ret = cat2(&stk)) == NULL) {
free_tok(next_token);
return NULL;
}
re = parse_re(s, end);
if (re == NULL) {
free(ret);
free_tok(next_token);
return NULL;
}
if (mk_alt(&stk, re) == NULL) {
free(ret);
free_tok(next_token);
return NULL;
}
free_tok(next_token); /* ZZZZZZZZZZZZZZZZZZ */
break;
case LITERAL:
if ((ret = Push(&stk, tok_val(next_token))) == NULL) {
free_tok(next_token);
return NULL;
}
free(next_token);
if (Size(stk) > 2) {
temp = stk->next;
stk->next = cat2(&temp); /* condense CAT nodes */
if (stk->next == NULL) {
free(ret);
return NULL;
}
else stk->size = stk->next->size + 1;
}
break;
default:
printf("parse_re: unknown token type %d\n", tok_type(next_token));
free_tok(next_token); /* ZZZZZZZZZZZZZZZZZZ */
break;
}
/* free_tok(next_token); */
}
}
/* parse() essentially just calls parse_re(). Its purpose is to stick an
end-of-string token at the end of the syntax tree returned by parse_re().
It should really be done in parse_re, but the recursion there makes it
more desirable to have it here. */
Re_node parse(s)
char *s;
{
Re_node val, tree, temp;
Stack top, stk = NULL;
if ((tree = parse_re(&s, NUL)) == NULL) return NULL;
if (Push(&stk, tree) == NULL) return NULL;
temp = mk_leaf(EOS, C_LIT, NUL, NULL);
if (temp == NULL || Push(&stk, temp) == NULL) return NULL;
final_pos = --pos_cnt;
top = cat2(&stk);
val = Top(top);
free(top);
return val;
}
|