1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210
|
#include <glm/geometric.hpp>
#include <glm/trigonometric.hpp>
#include <glm/ext/scalar_relational.hpp>
#include <glm/ext/vector_relational.hpp>
#include <glm/ext/vector_float1.hpp>
#include <glm/ext/vector_float2.hpp>
#include <glm/ext/vector_float3.hpp>
#include <glm/ext/vector_float4.hpp>
#include <glm/ext/vector_double2.hpp>
#include <glm/ext/vector_double3.hpp>
#include <glm/ext/vector_double4.hpp>
#include <limits>
namespace length
{
static int test()
{
float Length1 = glm::length(glm::vec1(1));
float Length2 = glm::length(glm::vec2(1, 0));
float Length3 = glm::length(glm::vec3(1, 0, 0));
float Length4 = glm::length(glm::vec4(1, 0, 0, 0));
int Error = 0;
Error += glm::abs(Length1 - 1.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1;
Error += glm::abs(Length2 - 1.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1;
Error += glm::abs(Length3 - 1.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1;
Error += glm::abs(Length4 - 1.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1;
return Error;
}
}//namespace length
namespace distance
{
static int test()
{
float Distance1 = glm::distance(glm::vec1(1), glm::vec1(1));
float Distance2 = glm::distance(glm::vec2(1, 0), glm::vec2(1, 0));
float Distance3 = glm::distance(glm::vec3(1, 0, 0), glm::vec3(1, 0, 0));
float Distance4 = glm::distance(glm::vec4(1, 0, 0, 0), glm::vec4(1, 0, 0, 0));
int Error = 0;
Error += glm::abs(Distance1) < std::numeric_limits<float>::epsilon() ? 0 : 1;
Error += glm::abs(Distance2) < std::numeric_limits<float>::epsilon() ? 0 : 1;
Error += glm::abs(Distance3) < std::numeric_limits<float>::epsilon() ? 0 : 1;
Error += glm::abs(Distance4) < std::numeric_limits<float>::epsilon() ? 0 : 1;
return Error;
}
}//namespace distance
namespace dot
{
static int test()
{
float Dot1 = glm::dot(glm::vec1(1), glm::vec1(1));
float Dot2 = glm::dot(glm::vec2(1), glm::vec2(1));
float Dot3 = glm::dot(glm::vec3(1), glm::vec3(1));
float Dot4 = glm::dot(glm::vec4(1), glm::vec4(1));
int Error = 0;
Error += glm::abs(Dot1 - 1.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1;
Error += glm::abs(Dot2 - 2.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1;
Error += glm::abs(Dot3 - 3.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1;
Error += glm::abs(Dot4 - 4.0f) < std::numeric_limits<float>::epsilon() ? 0 : 1;
return Error;
}
}//namespace dot
namespace cross
{
static int test()
{
glm::vec3 Cross1 = glm::cross(glm::vec3(1, 0, 0), glm::vec3(0, 1, 0));
glm::vec3 Cross2 = glm::cross(glm::vec3(0, 1, 0), glm::vec3(1, 0, 0));
int Error = 0;
Error += glm::all(glm::lessThan(glm::abs(Cross1 - glm::vec3(0, 0, 1)), glm::vec3(std::numeric_limits<float>::epsilon()))) ? 0 : 1;
Error += glm::all(glm::lessThan(glm::abs(Cross2 - glm::vec3(0, 0,-1)), glm::vec3(std::numeric_limits<float>::epsilon()))) ? 0 : 1;
return Error;
}
}//namespace cross
namespace normalize
{
static int test()
{
int Error = 0;
glm::vec3 Normalize1 = glm::normalize(glm::vec3(1, 0, 0));
glm::vec3 Normalize2 = glm::normalize(glm::vec3(2, 0, 0));
Error += glm::all(glm::lessThan(glm::abs(Normalize1 - glm::vec3(1, 0, 0)), glm::vec3(std::numeric_limits<float>::epsilon()))) ? 0 : 1;
Error += glm::all(glm::lessThan(glm::abs(Normalize2 - glm::vec3(1, 0, 0)), glm::vec3(std::numeric_limits<float>::epsilon()))) ? 0 : 1;
glm::vec3 ro = glm::vec3(glm::cos(5.f) * 3.f, 2.f, glm::sin(5.f) * 3.f);
glm::vec3 w = glm::normalize(glm::vec3(0, -0.2f, 0) - ro);
glm::vec3 u = glm::normalize(glm::cross(w, glm::vec3(0, 1, 0)));
glm::vec3 v = glm::cross(u, w);
glm::vec3 x = glm::cross(w, u);
Error += glm::all(glm::equal(x + v, glm::vec3(0), 0.01f)) ? 0 : 1;
return Error;
}
}//namespace normalize
namespace faceforward
{
static int test()
{
int Error = 0;
{
glm::vec3 N(0.0f, 0.0f, 1.0f);
glm::vec3 I(1.0f, 0.0f, 1.0f);
glm::vec3 Nref(0.0f, 0.0f, 1.0f);
glm::vec3 F = glm::faceforward(N, I, Nref);
Error += glm::all(glm::equal(F, glm::vec3(0.0, 0.0, -1.0), 0.0001f)) ? 0 : 1;
}
return Error;
}
}//namespace faceforward
namespace reflect
{
static int test()
{
int Error = 0;
{
glm::vec2 A(1.0f,-1.0f);
glm::vec2 B(0.0f, 1.0f);
glm::vec2 C = glm::reflect(A, B);
Error += glm::all(glm::equal(C, glm::vec2(1.0, 1.0), 0.0001f)) ? 0 : 1;
}
{
glm::dvec2 A(1.0f,-1.0f);
glm::dvec2 B(0.0f, 1.0f);
glm::dvec2 C = glm::reflect(A, B);
Error += glm::all(glm::equal(C, glm::dvec2(1.0, 1.0), 0.0001)) ? 0 : 1;
}
return Error;
}
}//namespace reflect
namespace refract
{
static int test()
{
int Error = 0;
{
float A(-1.0f);
float B(1.0f);
float C = glm::refract(A, B, 0.5f);
Error += glm::equal(C, -1.0f, 0.0001f) ? 0 : 1;
}
{
glm::vec2 A(0.0f,-1.0f);
glm::vec2 B(0.0f, 1.0f);
glm::vec2 C = glm::refract(A, B, 0.5f);
Error += glm::all(glm::equal(C, glm::vec2(0.0, -1.0), 0.0001f)) ? 0 : 1;
}
{
glm::dvec2 A(0.0f,-1.0f);
glm::dvec2 B(0.0f, 1.0f);
glm::dvec2 C = glm::refract(A, B, 0.5);
Error += glm::all(glm::equal(C, glm::dvec2(0.0, -1.0), 0.0001)) ? 0 : 1;
}
{
glm::vec4 A(0.0f, -1.0f, 0.0f, 0.0f);
glm::vec4 B(0.0f, 1.0f, 0.0f, 0.0f);
glm::vec4 C = glm::refract(A, B, 0.5f);
Error += glm::all(glm::equal(C, glm::vec4(0.0, -1.0, 0.0f, 0.0f), 0.0001f)) ? 0 : 1;
}
return Error;
}
}//namespace refract
int main()
{
int Error(0);
Error += length::test();
Error += distance::test();
Error += dot::test();
Error += cross::test();
Error += normalize::test();
Error += faceforward::test();
Error += reflect::test();
Error += refract::test();
return Error;
}
|