1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454
|
#include <glm/glm.hpp>
#include <cstdio>
#include <cstdlib> //To define "exit", req'd by XLC.
#include <ctime>
#ifdef NDEBUG
static int pop(unsigned x)
{
x = x - ((x >> 1) & 0x55555555);
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
x = (x + (x >> 4)) & 0x0F0F0F0F;
x = x + (x << 8);
x = x + (x << 16);
return x >> 24;
}
static int nlz(unsigned x)
{
x = x | (x >> 1);
x = x | (x >> 2);
x = x | (x >> 4);
x = x | (x >> 8);
x = x | (x >> 16);
return pop(~x);
}
static int ntz1(unsigned x)
{
return 32 - nlz(~x & (x-1));
}
static int ntz2(unsigned x)
{
return pop(~x & (x - 1));
}
static int ntz3(unsigned x)
{
int n;
if (x == 0) return(32);
n = 1;
if ((x & 0x0000FFFF) == 0) {n = n +16; x = x >>16;}
if ((x & 0x000000FF) == 0) {n = n + 8; x = x >> 8;}
if ((x & 0x0000000F) == 0) {n = n + 4; x = x >> 4;}
if ((x & 0x00000003) == 0) {n = n + 2; x = x >> 2;}
return n - (x & 1);
}
static int ntz4(unsigned x)
{
unsigned y;
int n;
if (x == 0) return 32;
n = 31;
y = x <<16; if (y != 0) {n = n -16; x = y;}
y = x << 8; if (y != 0) {n = n - 8; x = y;}
y = x << 4; if (y != 0) {n = n - 4; x = y;}
y = x << 2; if (y != 0) {n = n - 2; x = y;}
y = x << 1; if (y != 0) {n = n - 1;}
return n;
}
static int ntz4a(unsigned x)
{
unsigned y;
int n;
if (x == 0) return 32;
n = 31;
y = x <<16; if (y != 0) {n = n -16; x = y;}
y = x << 8; if (y != 0) {n = n - 8; x = y;}
y = x << 4; if (y != 0) {n = n - 4; x = y;}
y = x << 2; if (y != 0) {n = n - 2; x = y;}
n = n - ((x << 1) >> 31);
return n;
}
static int ntz5(char x)
{
if (x & 15) {
if (x & 3) {
if (x & 1) return 0;
else return 1;
}
else if (x & 4) return 2;
else return 3;
}
else if (x & 0x30) {
if (x & 0x10) return 4;
else return 5;
}
else if (x & 0x40) return 6;
else if (x) return 7;
else return 8;
}
static int ntz6(unsigned x)
{
int n;
x = ~x & (x - 1);
n = 0; // n = 32;
while(x != 0)
{ // while (x != 0) {
n = n + 1; // n = n - 1;
x = x >> 1; // x = x + x;
} // }
return n; // return n;
}
static int ntz6a(unsigned x)
{
int n = 32;
while (x != 0) {
n = n - 1;
x = x + x;
}
return n;
}
/* Dean Gaudet's algorithm. To be most useful there must be a good way
to evaluate the C "conditional expression" (a?b:c construction) without
branching. The result of a?b:c is b if a is true (nonzero), and c if a
is false (0).
For example, a compare to zero op that sets a target GPR to 1 if the
operand is 0, and to 0 if the operand is nonzero, will do it. With this
instruction, the algorithm is entirely branch-free. But the most
interesting thing about it is the high degree of parallelism. All six
lines with conditional expressions can be executed in parallel (on a
machine with sufficient computational units).
Although the instruction count is 30 measured statically, it could
execute in only 10 cycles on a machine with sufficient parallelism.
The first two uses of y can instead be x, which would increase the
useful parallelism on most machines (the assignments to y, bz, and b4
could then all run in parallel). */
#if GLM_COMPILER & GLM_COMPILER_VC
# pragma warning(push)
# pragma warning(disable : 4146)
#endif
static int ntz7(unsigned x)
{
unsigned y, bz, b4, b3, b2, b1, b0;
y = x & -x; // Isolate rightmost 1-bit.
bz = y ? 0 : 1; // 1 if y = 0.
b4 = (y & 0x0000FFFF) ? 0 : 16;
b3 = (y & 0x00FF00FF) ? 0 : 8;
b2 = (y & 0x0F0F0F0F) ? 0 : 4;
b1 = (y & 0x33333333) ? 0 : 2;
b0 = (y & 0x55555555) ? 0 : 1;
return bz + b4 + b3 + b2 + b1 + b0;
}
#if(GLM_COMPILER & GLM_COMPILER_VC)
# pragma warning(pop)
#endif
// This file has divisions by zero to test isnan
#if GLM_COMPILER & GLM_COMPILER_VC
# pragma warning(push)
# pragma warning(disable : 4146)
#endif
/*
static int ntz7_christophe(unsigned x)
{
unsigned y, bz, b4, b3, b2, b1, b0;
y = x & -x; // Isolate rightmost 1-bit.
bz = static_cast<unsigned>(!static_cast<bool>(y)); // 1 if y = 0.
b4 = static_cast<unsigned>(!static_cast<bool>(y & 0x0000FFFF)) * 16;
b3 = static_cast<unsigned>(!static_cast<bool>(y & 0x00FF00FF)) * 8;
b2 = static_cast<unsigned>(!static_cast<bool>(y & 0x0F0F0F0F)) * 4;
b1 = static_cast<unsigned>(!static_cast<bool>(y & 0x33333333)) * 2;
b0 = static_cast<unsigned>(!static_cast<bool>(y & 0x55555555)) * 1;
return bz + b4 + b3 + b2 + b1 + b0;
}
*/
/* Below is David Seal's algorithm, found at
http://www.ciphersbyritter.com/NEWS4/BITCT.HTM Table
entries marked "u" are unused. 6 ops including a
multiply, plus an indexed load. */
#define u 99
static int ntz8(unsigned x)
{
static char table[64] =
{32, 0, 1,12, 2, 6, u,13, 3, u, 7, u, u, u, u,14,
10, 4, u, u, 8, u, u,25, u, u, u, u, u,21,27,15,
31,11, 5, u, u, u, u, u, 9, u, u,24, u, u,20,26,
30, u, u, u, u,23, u,19, 29, u,22,18,28,17,16, u};
x = (x & -x)*0x0450FBAF;
return table[x >> 26];
}
/* Seal's algorithm with multiply expanded.
9 elementary ops plus an indexed load. */
static int ntz8a(unsigned x)
{
static char table[64] =
{32, 0, 1,12, 2, 6, u,13, 3, u, 7, u, u, u, u,14,
10, 4, u, u, 8, u, u,25, u, u, u, u, u,21,27,15,
31,11, 5, u, u, u, u, u, 9, u, u,24, u, u,20,26,
30, u, u, u, u,23, u,19, 29, u,22,18,28,17,16, u};
x = (x & -x);
x = (x << 4) + x; // x = x*17.
x = (x << 6) + x; // x = x*65.
x = (x << 16) - x; // x = x*65535.
return table[x >> 26];
}
/* Reiser's algorithm. Three ops including a "remainder,"
plus an indexed load. */
static int ntz9(unsigned x)
{
static char table[37] = {
32, 0, 1, 26, 2, 23, 27,
u, 3, 16, 24, 30, 28, 11, u, 13, 4,
7, 17, u, 25, 22, 31, 15, 29, 10, 12,
6, u, 21, 14, 9, 5, 20, 8, 19, 18};
x = (x & -x)%37;
return table[x];
}
/* Using a de Bruijn sequence. This is a table lookup with a 32-entry
table. The de Bruijn sequence used here is
0000 0100 1101 0111 0110 0101 0001 1111,
obtained from Danny Dube's October 3, 1997, posting in
comp.compression.research. Thanks to Norbert Juffa for this reference. */
static int ntz10(unsigned x) {
static char table[32] =
{ 0, 1, 2,24, 3,19, 6,25, 22, 4,20,10,16, 7,12,26,
31,23,18, 5,21, 9,15,11, 30,17, 8,14,29,13,28,27};
if (x == 0) return 32;
x = (x & -x)*0x04D7651F;
return table[x >> 27];
}
/* Norbert Juffa's code, answer to exercise 1 of Chapter 5 (2nd ed). */
#define SLOW_MUL
static int ntz11(unsigned int n) {
static unsigned char tab[32] =
{ 0, 1, 2, 24, 3, 19, 6, 25,
22, 4, 20, 10, 16, 7, 12, 26,
31, 23, 18, 5, 21, 9, 15, 11,
30, 17, 8, 14, 29, 13, 28, 27
};
unsigned int k;
n = n & (-n); /* isolate lsb */
printf("n = %d\n", n);
#if defined(SLOW_MUL)
k = (n << 11) - n;
k = (k << 2) + k;
k = (k << 8) + n;
k = (k << 5) - k;
#else
k = n * 0x4d7651f;
#endif
return n ? tab[k>>27] : 32;
}
#if(GLM_COMPILER & GLM_COMPILER_VC)
# pragma warning(pop)
#endif
int errors;
static void error(int x, int y) {
errors = errors + 1;
std::printf("Error for x = %08x, got %d\n", x, y);
}
#if defined(_MSC_VER)
# pragma warning(push)
# pragma warning(disable: 4389) // nonstandard extension used : nameless struct/union
#endif
int main()
{
int i, m, n;
static unsigned test[] = {0,32, 1,0, 2,1, 3,0, 4,2, 5,0, 6,1, 7,0,
8,3, 9,0, 16,4, 32,5, 64,6, 128,7, 255,0, 256,8, 512,9, 1024,10,
2048,11, 4096,12, 8192,13, 16384,14, 32768,15, 65536,16,
0x20000,17, 0x40000,18, 0x80000,19, 0x100000,20, 0x200000,21,
0x400000,22, 0x800000,23, 0x1000000,24, 0x2000000,25,
0x4000000,26, 0x8000000,27, 0x10000000,28, 0x20000000,29,
0x40000000,30, 0x80000000,31, 0xFFFFFFF0,4, 0x3000FF00,8,
0xC0000000,30, 0x60000000,29, 0x00011000, 12};
std::size_t const Count = 1000;
n = sizeof(test)/4;
std::clock_t TimestampBeg = 0;
std::clock_t TimestampEnd = 0;
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (ntz1(test[i]) != test[i+1]) error(test[i], ntz1(test[i]));}
TimestampEnd = std::clock();
std::printf("ntz1: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (ntz2(test[i]) != test[i+1]) error(test[i], ntz2(test[i]));}
TimestampEnd = std::clock();
std::printf("ntz2: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (ntz3(test[i]) != test[i+1]) error(test[i], ntz3(test[i]));}
TimestampEnd = std::clock();
std::printf("ntz3: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (ntz4(test[i]) != test[i+1]) error(test[i], ntz4(test[i]));}
TimestampEnd = std::clock();
std::printf("ntz4: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (ntz4a(test[i]) != test[i+1]) error(test[i], ntz4a(test[i]));}
TimestampEnd = std::clock();
std::printf("ntz4a: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
TimestampBeg = std::clock();
for(std::size_t k = 0; k < Count; ++k)
for(i = 0; i < n; i += 2)
{
m = test[i+1];
if(m > 8)
m = 8;
if(ntz5(static_cast<char>(test[i])) != m)
error(test[i], ntz5(static_cast<char>(test[i])));
}
TimestampEnd = std::clock();
std::printf("ntz5: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (ntz6(test[i]) != test[i+1]) error(test[i], ntz6(test[i]));}
TimestampEnd = std::clock();
std::printf("ntz6: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (ntz6a(test[i]) != test[i+1]) error(test[i], ntz6a(test[i]));}
TimestampEnd = std::clock();
std::printf("ntz6a: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (ntz7(test[i]) != test[i+1]) error(test[i], ntz7(test[i]));}
TimestampEnd = std::clock();
std::printf("ntz7: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
/*
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (ntz7_christophe(test[i]) != test[i+1]) error(test[i], ntz7(test[i]));}
TimestampEnd = std::clock();
std::printf("ntz7_christophe: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
*/
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (ntz8(test[i]) != test[i+1]) error(test[i], ntz8(test[i]));}
TimestampEnd = std::clock();
std::printf("ntz8: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (ntz8a(test[i]) != test[i+1]) error(test[i], ntz8a(test[i]));}
TimestampEnd = std::clock();
std::printf("ntz8a: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (ntz9(test[i]) != test[i+1]) error(test[i], ntz9(test[i]));}
TimestampEnd = std::clock();
std::printf("ntz9: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (ntz10(test[i]) != test[i+1]) error(test[i], ntz10(test[i]));}
TimestampEnd = std::clock();
std::printf("ntz10: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (ntz11(test[i]) != test[i + 1]) error(test[i], ntz11(test[i]));
}
TimestampEnd = std::clock();
std::printf("ntz11: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
if (errors == 0)
std::printf("Passed all %d cases.\n", static_cast<int>(sizeof(test)/8));
}
#if defined(_MSC_VER)
# pragma warning(pop)
#endif
#else
int main()
{
return 0;
}
#endif//NDEBUG
|