1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465
|
#include <glm/glm.hpp>
#include <cstdio>
#include <cstdlib> // To define "exit", req'd by XLC.
#include <ctime>
#ifdef NDEBUG
#define LE 1 // 1 for little-endian, 0 for big-endian.
static int pop(unsigned x) {
x = x - ((x >> 1) & 0x55555555);
x = (x & 0x33333333) + ((x >> 2) & 0x33333333);
x = (x + (x >> 4)) & 0x0F0F0F0F;
x = x + (x << 8);
x = x + (x << 16);
return x >> 24;
}
static int nlz1(unsigned x) {
int n;
if (x == 0) return(32);
n = 0;
if (x <= 0x0000FFFF) {n = n +16; x = x <<16;}
if (x <= 0x00FFFFFF) {n = n + 8; x = x << 8;}
if (x <= 0x0FFFFFFF) {n = n + 4; x = x << 4;}
if (x <= 0x3FFFFFFF) {n = n + 2; x = x << 2;}
if (x <= 0x7FFFFFFF) {n = n + 1;}
return n;
}
static int nlz1a(unsigned x) {
int n;
/* if (x == 0) return(32); */
if (static_cast<int>(x) <= 0) return (~x >> 26) & 32;
n = 1;
if ((x >> 16) == 0) {n = n +16; x = x <<16;}
if ((x >> 24) == 0) {n = n + 8; x = x << 8;}
if ((x >> 28) == 0) {n = n + 4; x = x << 4;}
if ((x >> 30) == 0) {n = n + 2; x = x << 2;}
n = n - (x >> 31);
return n;
}
// On basic Risc, 12 to 20 instructions.
static int nlz2(unsigned x) {
unsigned y;
int n;
n = 32;
y = x >>16; if (y != 0) {n = n -16; x = y;}
y = x >> 8; if (y != 0) {n = n - 8; x = y;}
y = x >> 4; if (y != 0) {n = n - 4; x = y;}
y = x >> 2; if (y != 0) {n = n - 2; x = y;}
y = x >> 1; if (y != 0) return n - 2;
return n - x;
}
// As above but coded as a loop for compactness:
// 23 to 33 basic Risc instructions.
static int nlz2a(unsigned x) {
unsigned y;
int n, c;
n = 32;
c = 16;
do {
y = x >> c; if (y != 0) {n = n - c; x = y;}
c = c >> 1;
} while (c != 0);
return n - x;
}
static int nlz3(int x) {
int y, n;
n = 0;
y = x;
L: if (x < 0) return n;
if (y == 0) return 32 - n;
n = n + 1;
x = x << 1;
y = y >> 1;
goto L;
}
#if GLM_COMPILER & GLM_COMPILER_VC
# pragma warning(push)
# pragma warning(disable : 4146)
#endif
static int nlz4(unsigned x) {
int y, m, n;
y = -(x >> 16); // If left half of x is 0,
m = (y >> 16) & 16; // set n = 16. If left half
n = 16 - m; // is nonzero, set n = 0 and
x = x >> m; // shift x right 16.
// Now x is of the form 0000xxxx.
y = x - 0x100; // If positions 8-15 are 0,
m = (y >> 16) & 8; // add 8 to n and shift x left 8.
n = n + m;
x = x << m;
y = x - 0x1000; // If positions 12-15 are 0,
m = (y >> 16) & 4; // add 4 to n and shift x left 4.
n = n + m;
x = x << m;
y = x - 0x4000; // If positions 14-15 are 0,
m = (y >> 16) & 2; // add 2 to n and shift x left 2.
n = n + m;
x = x << m;
y = x >> 14; // Set y = 0, 1, 2, or 3.
m = y & ~(y >> 1); // Set m = 0, 1, 2, or 2 resp.
return n + 2 - m;
}
#if(GLM_COMPILER & GLM_COMPILER_VC)
# pragma warning(pop)
#endif
static int nlz5(unsigned x) {
int pop(unsigned x);
x = x | (x >> 1);
x = x | (x >> 2);
x = x | (x >> 4);
x = x | (x >> 8);
x = x | (x >>16);
return pop(~x);
}
/* The four programs below are not valid ANSI C programs. This is
because they refer to the same storage locations as two different types.
However, they work with xlc/AIX, gcc/AIX, and gcc/NT. If you try to
code them more compactly by declaring a variable xx to be "double," and
then using
n = 1054 - (*((unsigned *)&xx + LE) >> 20);
then you are violating not only the rule above, but also the ANSI C
rule that pointer arithmetic can be performed only on pointers to
array elements.
When coded with the above statement, the program fails with xlc,
gcc/AIX, and gcc/NT, at some optimization levels.
BTW, these programs use the "anonymous union" feature of C++, not
available in C. */
static int nlz6(unsigned k)
{
union {
unsigned asInt[2];
double asDouble;
};
int n;
asDouble = static_cast<double>(k) + 0.5;
n = 1054 - (asInt[LE] >> 20);
return n;
}
static int nlz7(unsigned k)
{
union {
unsigned asInt[2];
double asDouble;
};
int n;
asDouble = static_cast<double>(k);
n = 1054 - (asInt[LE] >> 20);
n = (n & 31) + (n >> 9);
return n;
}
/* In single qualifier, round-to-nearest mode, the basic method fails for:
k = 0, k = 01FFFFFF, 03FFFFFE <= k <= 03FFFFFF,
07FFFFFC <= k <= 07FFFFFF,
0FFFFFF8 <= k <= 0FFFFFFF,
...
7FFFFFC0 <= k <= 7FFFFFFF.
FFFFFF80 <= k <= FFFFFFFF.
For k = 0 it gives 158, and for the other values it is too low by 1. */
static int nlz8(unsigned k)
{
union {
unsigned asInt;
float asFloat;
};
int n;
k = k & ~(k >> 1); /* Fix problem with rounding. */
asFloat = static_cast<float>(k) + 0.5f;
n = 158 - (asInt >> 23);
return n;
}
/* The example below shows how to make a macro for nlz. It uses an
extension to the C and C++ languages that is provided by the GNU C/C++
compiler, namely, that of allowing statements and declarations in
expressions (see "Using and Porting GNU CC", by Richard M. Stallman
(1998). The underscores are necessary to protect against the
possibility that the macro argument will conflict with one of its local
variables, e.g., NLZ(k). */
static int nlz9(unsigned k)
{
union {
unsigned asInt;
float asFloat;
};
int n;
k = k & ~(k >> 1); /* Fix problem with rounding. */
asFloat = static_cast<float>(k);
n = 158 - (asInt >> 23);
n = (n & 31) + (n >> 6); /* Fix problem with k = 0. */
return n;
}
/* Below are three nearly equivalent programs for computing the number
of leading zeros in a word. This material is not in HD, but may be in a
future edition.
Immediately below is Robert Harley's algorithm, found at the
comp.arch newsgroup entry dated 7/12/96, pointed out to me by Norbert
Juffa.
Table entries marked "u" are unused. 14 ops including a multiply,
plus an indexed load.
The smallest multiplier that works is 0x045BCED1 = 17*65*129*513 (all
of form 2**k + 1). There are no multipliers of three terms of the form
2**k +- 1 that work, with a table size of 64 or 128. There are some,
with a table size of 64, if you precede the multiplication with x = x -
(x >> 1), but that seems less elegant. There are also some if you use a
table size of 256, the smallest is 0x01033CBF = 65*255*1025 (this would
save two instructions in the form of this algorithm with the
multiplication expanded into shifts and adds, but the table size is
getting a bit large). */
#define u 99
static int nlz10(unsigned x)
{
static char table[64] =
{32,31, u,16, u,30, 3, u, 15, u, u, u,29,10, 2, u,
u, u,12,14,21, u,19, u, u,28, u,25, u, 9, 1, u,
17, u, 4, u, u, u,11, u, 13,22,20, u,26, u, u,18,
5, u, u,23, u,27, u, 6, u,24, 7, u, 8, u, 0, u};
x = x | (x >> 1); // Propagate leftmost
x = x | (x >> 2); // 1-bit to the right.
x = x | (x >> 4);
x = x | (x >> 8);
x = x | (x >>16);
x = x*0x06EB14F9; // Multiplier is 7*255**3.
return table[x >> 26];
}
/* Harley's algorithm with multiply expanded.
19 elementary ops plus an indexed load. */
static int nlz10a(unsigned x)
{
static char table[64] =
{32,31, u,16, u,30, 3, u, 15, u, u, u,29,10, 2, u,
u, u,12,14,21, u,19, u, u,28, u,25, u, 9, 1, u,
17, u, 4, u, u, u,11, u, 13,22,20, u,26, u, u,18,
5, u, u,23, u,27, u, 6, u,24, 7, u, 8, u, 0, u};
x = x | (x >> 1); // Propagate leftmost
x = x | (x >> 2); // 1-bit to the right.
x = x | (x >> 4);
x = x | (x >> 8);
x = x | (x >> 16);
x = (x << 3) - x; // Multiply by 7.
x = (x << 8) - x; // Multiply by 255.
x = (x << 8) - x; // Again.
x = (x << 8) - x; // Again.
return table[x >> 26];
}
/* Julius Goryavsky's version of Harley's algorithm.
17 elementary ops plus an indexed load, if the machine
has "and not." */
static int nlz10b(unsigned x)
{
static char table[64] =
{32,20,19, u, u,18, u, 7, 10,17, u, u,14, u, 6, u,
u, 9, u,16, u, u, 1,26, u,13, u, u,24, 5, u, u,
u,21, u, 8,11, u,15, u, u, u, u, 2,27, 0,25, u,
22, u,12, u, u, 3,28, u, 23, u, 4,29, u, u,30,31};
x = x | (x >> 1); // Propagate leftmost
x = x | (x >> 2); // 1-bit to the right.
x = x | (x >> 4);
x = x | (x >> 8);
x = x & ~(x >> 16);
x = x*0xFD7049FF; // Activate this line or the following 3.
// x = (x << 9) - x; // Multiply by 511.
// x = (x << 11) - x; // Multiply by 2047.
// x = (x << 14) - x; // Multiply by 16383.
return table[x >> 26];
}
int errors;
static void error(int x, int y)
{
errors = errors + 1;
std::printf("Error for x = %08x, got %d\n", x, y);
}
#if defined(_MSC_VER)
# pragma warning(push)
# pragma warning(disable: 4389) // nonstandard extension used : nameless struct/union
#endif
int main()
{
int i, n;
static unsigned test[] = {0,32, 1,31, 2,30, 3,30, 4,29, 5,29, 6,29,
7,29, 8,28, 9,28, 16,27, 32,26, 64,25, 128,24, 255,24, 256,23,
512,22, 1024,21, 2048,20, 4096,19, 8192,18, 16384,17, 32768,16,
65536,15, 0x20000,14, 0x40000,13, 0x80000,12, 0x100000,11,
0x200000,10, 0x400000,9, 0x800000,8, 0x1000000,7, 0x2000000,6,
0x4000000,5, 0x8000000,4, 0x0FFFFFFF,4, 0x10000000,3,
0x3000FFFF,2, 0x50003333,1, 0x7FFFFFFF,1, 0x80000000,0,
0xFFFFFFFF,0};
std::size_t const Count = 1000;
n = sizeof(test)/4;
std::clock_t TimestampBeg = 0;
std::clock_t TimestampEnd = 0;
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (nlz1(test[i]) != test[i+1]) error(test[i], nlz1(test[i]));}
TimestampEnd = std::clock();
std::printf("nlz1: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (nlz1a(test[i]) != test[i+1]) error(test[i], nlz1a(test[i]));}
TimestampEnd = std::clock();
std::printf("nlz1a: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (nlz2(test[i]) != test[i+1]) error(test[i], nlz2(test[i]));}
TimestampEnd = std::clock();
std::printf("nlz2: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (nlz2a(test[i]) != test[i+1]) error(test[i], nlz2a(test[i]));}
TimestampEnd = std::clock();
std::printf("nlz2a: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (nlz3(test[i]) != test[i+1]) error(test[i], nlz3(test[i]));}
TimestampEnd = std::clock();
std::printf("nlz3: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (nlz4(test[i]) != test[i+1]) error(test[i], nlz4(test[i]));}
TimestampEnd = std::clock();
std::printf("nlz4: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (nlz5(test[i]) != test[i+1]) error(test[i], nlz5(test[i]));}
TimestampEnd = std::clock();
std::printf("nlz5: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (nlz6(test[i]) != test[i+1]) error(test[i], nlz6(test[i]));}
TimestampEnd = std::clock();
std::printf("nlz6: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (nlz7(test[i]) != test[i+1]) error(test[i], nlz7(test[i]));}
TimestampEnd = std::clock();
std::printf("nlz7: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (nlz8(test[i]) != test[i+1]) error(test[i], nlz8(test[i]));}
TimestampEnd = std::clock();
std::printf("nlz8: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (nlz9(test[i]) != test[i+1]) error(test[i], nlz9(test[i]));}
TimestampEnd = std::clock();
std::printf("nlz9: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (nlz10(test[i]) != test[i+1]) error(test[i], nlz10(test[i]));}
TimestampEnd = std::clock();
std::printf("nlz10: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (nlz10a(test[i]) != test[i+1]) error(test[i], nlz10a(test[i]));}
TimestampEnd = std::clock();
std::printf("nlz10a: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
TimestampBeg = std::clock();
for (std::size_t k = 0; k < Count; ++k)
for (i = 0; i < n; i += 2) {
if (nlz10b(test[i]) != test[i+1]) error(test[i], nlz10b(test[i]));}
TimestampEnd = std::clock();
std::printf("nlz10b: %d clocks\n", static_cast<int>(TimestampEnd - TimestampBeg));
if (errors == 0)
std::printf("Passed all %d cases.\n", static_cast<int>(sizeof(test)/8));
}
#if defined(_MSC_VER)
# pragma warning(pop)
#endif
#else
int main()
{
return 0;
}
#endif//NDEBUG
|