1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314
|
/* glplpx.h (LP/MIP problem object) */
/*----------------------------------------------------------------------
-- This code is part of GNU Linear Programming Kit (GLPK).
--
-- Copyright (C) 2000, 01, 02, 03, 04, 05, 06 Andrew Makhorin,
-- Department for Applied Informatics, Moscow Aviation Institute,
-- Moscow, Russia. All rights reserved. E-mail: <mao@mai2.rcnet.ru>.
--
-- GLPK is free software; you can redistribute it and/or modify it
-- under the terms of the GNU General Public License as published by
-- the Free Software Foundation; either version 2, or (at your option)
-- any later version.
--
-- GLPK is distributed in the hope that it will be useful, but WITHOUT
-- ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
-- or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
-- License for more details.
--
-- You should have received a copy of the GNU General Public License
-- along with GLPK; see the file COPYING. If not, write to the Free
-- Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA
-- 02110-1301, USA.
----------------------------------------------------------------------*/
#ifndef _GLPLPX_H
#define _GLPLPX_H
#include "glpavl.h"
#include "glpbfi.h"
#include "glpstr.h"
#define lpx_create_prob glp_lpx_create_prob
#define lpx_set_prob_name glp_lpx_set_prob_name
#define lpx_set_class glp_lpx_set_class
#define lpx_set_obj_name glp_lpx_set_obj_name
#define lpx_set_obj_dir glp_lpx_set_obj_dir
#define lpx_add_rows glp_lpx_add_rows
#define lpx_add_cols glp_lpx_add_cols
#define lpx_set_row_name glp_lpx_set_row_name
#define lpx_set_col_name glp_lpx_set_col_name
#define lpx_set_col_kind glp_lpx_set_col_kind
#define lpx_set_row_bnds glp_lpx_set_row_bnds
#define lpx_set_col_bnds glp_lpx_set_col_bnds
#define lpx_set_obj_coef glp_lpx_set_obj_coef
#define lpx_set_mat_row glp_lpx_set_mat_row
#define lpx_set_mat_col glp_lpx_set_mat_col
#define lpx_load_matrix glp_lpx_load_matrix
#define lpx_order_matrix glp_lpx_order_matrix
#define lpx_set_rii glp_lpx_set_rii
#define lpx_set_sjj glp_lpx_set_sjj
#define lpx_set_row_stat glp_lpx_set_row_stat
#define lpx_set_col_stat glp_lpx_set_col_stat
#define lpx_del_rows glp_lpx_del_rows
#define lpx_del_cols glp_lpx_del_cols
#define lpx_delete_prob glp_lpx_delete_prob
#if 1 /* 15/VIII-2004 */
#define lpx_create_index glp_lpx_create_index
#define lpx_find_row glp_lpx_find_row
#define lpx_find_col glp_lpx_find_col
#define lpx_delete_index glp_lpx_delete_index
#endif
#define lpx_put_lp_basis glp_lpx_put_lp_basis
#define lpx_put_solution glp_lpx_put_solution
#define lpx_put_ray_info glp_lpx_put_ray_info
#define lpx_put_ipt_soln glp_lpx_put_ipt_soln
#define lpx_put_mip_soln glp_lpx_put_mip_soln
#define lpx_get_prob_name glp_lpx_get_prob_name
#define lpx_get_class glp_lpx_get_class
#define lpx_get_obj_name glp_lpx_get_obj_name
#define lpx_get_obj_dir glp_lpx_get_obj_dir
#define lpx_get_num_rows glp_lpx_get_num_rows
#define lpx_get_num_cols glp_lpx_get_num_cols
#define lpx_get_num_int glp_lpx_get_num_int
#define lpx_get_num_bin glp_lpx_get_num_bin
#define lpx_get_row_name glp_lpx_get_row_name
#define lpx_get_col_name glp_lpx_get_col_name
#define lpx_get_col_kind glp_lpx_get_col_kind
#define lpx_get_row_type glp_lpx_get_row_type
#define lpx_get_row_lb glp_lpx_get_row_lb
#define lpx_get_row_ub glp_lpx_get_row_ub
#define lpx_get_col_type glp_lpx_get_col_type
#define lpx_get_col_lb glp_lpx_get_col_lb
#define lpx_get_col_ub glp_lpx_get_col_ub
#define lpx_get_obj_coef glp_lpx_get_obj_coef
#define lpx_get_num_nz glp_lpx_get_num_nz
#define lpx_get_mat_row glp_lpx_get_mat_row
#define lpx_get_mat_col glp_lpx_get_mat_col
#define lpx_get_rii glp_lpx_get_rii
#define lpx_get_sjj glp_lpx_get_sjj
#define lpx_is_b_avail glp_lpx_is_b_avail
#define lpx_get_b_info glp_lpx_get_b_info
#define lpx_get_row_b_ind glp_lpx_get_row_b_ind
#define lpx_get_col_b_ind glp_lpx_get_col_b_ind
#define lpx_access_inv glp_lpx_access_inv
#define lpx_get_status glp_lpx_get_status
#define lpx_get_prim_stat glp_lpx_get_prim_stat
#define lpx_get_dual_stat glp_lpx_get_dual_stat
#define lpx_get_obj_val glp_lpx_get_obj_val
#define lpx_get_row_stat glp_lpx_get_row_stat
#define lpx_get_row_prim glp_lpx_get_row_prim
#define lpx_get_row_dual glp_lpx_get_row_dual
#define lpx_get_col_stat glp_lpx_get_col_stat
#define lpx_get_col_prim glp_lpx_get_col_prim
#define lpx_get_col_dual glp_lpx_get_col_dual
#define lpx_get_ray_info glp_lpx_get_ray_info
#define lpx_ipt_status glp_lpx_ipt_status
#define lpx_ipt_obj_val glp_lpx_ipt_obj_val
#define lpx_ipt_row_prim glp_lpx_ipt_row_prim
#define lpx_ipt_row_dual glp_lpx_ipt_row_dual
#define lpx_ipt_col_prim glp_lpx_ipt_col_prim
#define lpx_ipt_col_dual glp_lpx_ipt_col_dual
#define lpx_mip_status glp_lpx_mip_status
#define lpx_mip_obj_val glp_lpx_mip_obj_val
#define lpx_mip_row_val glp_lpx_mip_row_val
#define lpx_mip_col_val glp_lpx_mip_col_val
#define lpx_get_row_bnds glp_lpx_get_row_bnds /* obsolete */
#define lpx_get_col_bnds glp_lpx_get_col_bnds /* obsolete */
#define lpx_get_row_info glp_lpx_get_row_info /* obsolete */
#define lpx_get_col_info glp_lpx_get_col_info /* obsolete */
#define lpx_reset_parms glp_lpx_reset_parms
#define lpx_set_int_parm glp_lpx_set_int_parm
#define lpx_get_int_parm glp_lpx_get_int_parm
#define lpx_set_real_parm glp_lpx_set_real_parm
#define lpx_get_real_parm glp_lpx_get_real_parm
#define lpx_scale_prob glp_lpx_scale_prob
#define lpx_unscale_prob glp_lpx_unscale_prob
#define lpx_std_basis glp_lpx_std_basis
#define lpx_adv_basis glp_lpx_adv_basis
#define lpx_cpx_basis glp_lpx_cpx_basis
#define lpx_simplex glp_lpx_simplex
#define lpx_check_kkt glp_lpx_check_kkt
#define lpx_interior glp_lpx_interior
#define lpx_integer glp_lpx_integer
#define lpx_check_int glp_lpx_check_int
#define lpx_intopt glp_lpx_intopt
#define lpx_primal glp_lpx_primal
#define lpx_invert glp_lpx_invert
#define lpx_ftran glp_lpx_ftran
#define lpx_btran glp_lpx_btran
#define lpx_eval_b_prim glp_lpx_eval_b_prim
#define lpx_eval_b_dual glp_lpx_eval_b_dual
#define lpx_warm_up glp_lpx_warm_up
#define lpx_eval_tab_row glp_lpx_eval_tab_row
#define lpx_eval_tab_col glp_lpx_eval_tab_col
#define lpx_transform_row glp_lpx_transform_row
#define lpx_transform_col glp_lpx_transform_col
#define lpx_prim_ratio_test glp_lpx_prim_ratio_test
#define lpx_dual_ratio_test glp_lpx_dual_ratio_test
#define lpx_remove_tiny glp_lpx_remove_tiny
#define lpx_reduce_form glp_lpx_reduce_form
#define lpx_eval_row glp_lpx_eval_row
#define lpx_eval_degrad glp_lpx_eval_degrad
#define lpx_gomory_cut glp_lpx_gomory_cut
#define lpx_cover_cut glp_lpx_cover_cut
#if 1 /* 19/IV-2006 */
#define lpx_create_cog glp_lpx_create_cog
#define lpx_add_cog_edge glp_lpx_add_cog_edge
#define lpx_clique_cut glp_lpx_clique_cut
#define lpx_delete_cog glp_lpx_delete_cog
#endif
#define lpx_read_mps glp_lpx_read_mps
#define lpx_write_mps glp_lpx_write_mps
#define lpx_read_bas glp_lpx_read_bas
#define lpx_write_bas glp_lpx_write_bas
#define lpx_read_freemps glp_lpx_read_freemps
#define lpx_write_freemps glp_lpx_write_freemps
#define lpx_print_prob glp_lpx_print_prob
#define lpx_print_sol glp_lpx_print_sol
#define lpx_print_ips glp_lpx_print_ips
#define lpx_print_mip glp_lpx_print_mip
#define lpx_print_sens_bnds glp_lpx_print_sens_bnds
#define lpx_read_cpxlp glp_lpx_read_cpxlp
#define lpx_write_cpxlp glp_lpx_write_cpxlp
#define lpx_extract_prob glp_lpx_extract_prob
#define lpx_read_model glp_lpx_read_model
#define lpx_read_prob glp_lpx_read_prob
#define lpx_write_prob glp_lpx_write_prob
/*----------------------------------------------------------------------
-- The structure LPX is an LP/MIP problem object, which corresponds to
-- the following problem statement:
--
-- minimize (or maximize)
--
-- Z = c[1]*x[m+1] + c[2]*x[m+2] + ... + c[n]*x[m+n] + c[0] (1)
--
-- subject to linear constraints
--
-- x[1] = a[1,1]*x[m+1] + a[1,2]*x[m+1] + ... + a[1,n]*x[m+n]
-- x[2] = a[2,1]*x[m+1] + a[2,2]*x[m+1] + ... + a[2,n]*x[m+n] (2)
-- . . . . . .
-- x[m] = a[m,1]*x[m+1] + a[m,2]*x[m+1] + ... + a[m,n]*x[m+n]
--
-- and bounds of variables
--
-- l[1] <= x[1] <= u[1]
-- l[2] <= x[2] <= u[2] (3)
-- . . . . . .
-- l[m+n] <= x[m+n] <= u[m+n]
--
-- where:
-- x[1], ..., x[m] - rows (auxiliary variables);
-- x[m+1], ..., x[m+n] - columns (structural variables);
-- Z - objective function;
-- c[1], ..., c[n] - coefficients of the objective function;
-- c[0] - constant term of the objective function;
-- a[1,1], ..., a[m,n] - constraint coefficients;
-- l[1], ..., l[m+n] - lower bounds of variables;
-- u[1], ..., u[m+n] - upper bounds of variables.
--
-- Using vector-matrix notations the LP problem (1)-(3) can be written
-- as follows:
--
-- minimize (or maximize)
--
-- Z = c * x + c[0] (4)
--
-- subject to linear constraints
--
-- xR = A * xS (5)
--
-- and bounds of variables
--
-- l <= x <= u (6)
--
-- where:
-- xR - vector of auxiliary variables;
-- xS - vector of structural variables;
-- x = (xR, xS) - vector of all variables;
-- c - vector of objective coefficients;
-- A - constraint matrix (has m rows and n columns);
-- l - vector of lower bounds of variables;
-- u - vector of upper bounds of variables.
--
-- The system of constraints (5) can be written in homogeneous form as
-- follows:
--
-- A~ * x = 0, (7)
--
-- where
--
-- A~ = (I | -A) (8)
--
-- is an augmented constraint matrix (has m rows and m+n columns), I is
-- the unity matrix of the order m. Note that in the structure LPX only
-- the original constraint matrix A is explicitly stored.
--
-- The current basis is defined by partitioning columns of the matrix
-- A~ into basic and non-basic ones, in which case the system (7) can
-- be written as
--
-- B * xB + N * xN = 0, (9)
--
-- where B is a square non-sigular mxm matrix built of basic columns
-- and called the basis matrix, N is a mxn matrix built of non-basic
-- columns, xB is vector of basic variables, xN is vector of non-basic
-- variables.
--
-- Using the partitioning (9) the LP problem (4)-(6) can be written in
-- a form, which defines components of the corresponding basic solution
-- and is called the simplex table:
--
-- Z = d * xN + c[0] (10)
--
-- xB = A^ * xN (11)
--
-- lB <= xB <= uB (12)
--
-- lN <= xN <= uN (13)
--
-- where:
--
-- A^ = (alfa[i,j]) = - inv(B) * N (14)
--
-- is the mxn matrix of influence coefficients;
--
-- d = (d[j]) = cN - N' * pi (15)
--
-- is the vector of reduced costs of non-basic variables; and
--
-- pi = (pi[i]) = inv(B') * cB (16)
--
-- is the vector of simplex (Lagrange) multipliers, which correspond to
-- the equiality constraints (5).
--
-- Note that signs of the reduced costs d are determined by the formula
-- (15) in both cases of minimization and maximization.
--
-- The structure LPX allows scaling the problem. In the scaled problem
-- the constraint matrix is scaled and has the form:
--
-- A" = R * A * S, (17)
--
-- where A is the constraint matrix of the original (unscaled) problem,
-- R and S are, respectively, diagonal scaling mxm and nxn matrices with
-- positive diagonal elements used to scale rows and columns of A.
--
-- The connection between the original and scaled components is defined
-- by (17) and expressed with the following formulae:
--
-- c" = S * c (objective coefficients)
--
-- xR" = R * xR (values of auxiliary variables)
-- lR" = R * lR (lower bounds of auxiliary variables)
-- uR" = R * uR (upper bounds of auxiliary variables)
--
-- xS" = inv(S) * xS (values of structural variables)
-- lS" = inv(S) * lS (lower bounds of structural variables)
-- uS" = inv(S) * uS (upper bounds of structural variables)
--
-- A" = R * A * S (constraint matrix)
--
-- Note that substitution scaled components into (4)-(6) gives the same
-- LP problem. */
typedef struct LPX LPX;
typedef struct LPXROW LPXROW;
typedef struct LPXCOL LPXCOL;
typedef struct LPXAIJ LPXAIJ;
#ifndef _GLPLPX_UNLOCK
struct LPX { int none_; };
struct LPX_LOCKED
#else
struct LPX
#endif
{ /* LP/MIP problem object */
/*--------------------------------------------------------------*/
/* memory management */
DMP *row_pool;
/* memory pool for LPXROW objects */
DMP *col_pool;
/* memory pool for LPXCOL objects */
DMP *aij_pool;
/* memory pool for LPXAIJ objects */
DMP *str_pool;
/* memory pool for segmented character strings */
char *str_buf; /* char str_buf[255+1]; */
/* working buffer to store character strings */
/*--------------------------------------------------------------*/
/* LP/MIP data */
STR *name;
/* problem name (1 to 255 chars); NULL means no name is assigned
to the problem */
int klass;
/* problem class: */
#define LPX_LP 100 /* linear programming (LP) */
#define LPX_MIP 101 /* mixed integer programming (MIP) */
STR *obj;
/* objective function name (1 to 255 chars); NULL means no name
is assigned to the objective function */
int dir;
/* optimization direction flag (objective "sense"): */
#define LPX_MIN 120 /* minimization */
#define LPX_MAX 121 /* maximization */
double c0;
/* constant term of the objective function ("shift") */
int m_max;
/* length of the array of rows (enlarged automatically) */
int n_max;
/* length of the array of columns (enlarged automatically) */
int m;
/* number of rows, 0 <= m <= m_max */
int n;
/* number of columns, 0 <= n <= n_max */
LPXROW **row; /* LPXROW *row[1+m_max]; */
/* row[0] is not used;
row[i], 1 <= i <= m, is a pointer to i-th row */
LPXCOL **col; /* LPXCOL *col[1+n_max]; */
/* col[0] is not used;
col[j], 1 <= j <= n, is a pointer to j-th column */
#if 1 /* 15/VIII-2004 */
AVLTREE *r_tree;
/* row index to find rows by their names; NULL means this index
does not exist */
AVLTREE *c_tree;
/* column index to find columns by their names; NULL means this
index does not exist */
#endif
/*--------------------------------------------------------------*/
/* LP basis */
int b_stat;
/* basis status: */
#define LPX_B_UNDEF 130 /* current basis is undefined */
#define LPX_B_VALID 131 /* current basis is valid */
int *basis; /* int basis[1+m_max]; */
/* basis header (valid only if the basis status is LPX_B_VALID):
basis[0] is not used;
basis[i] = k is the ordinal number of auxiliary (1 <= k <= m)
or structural (m+1 <= k <= m+n) variable which corresponds to
i-th basic variable xB[i], 1 <= i <= m */
BFI *b_inv; /* BFI b_inv[1:m,1:m]; */
/* factorization (invertable form) of the current basis matrix;
NULL means the factorization does not exist; it is valid only
if the basis status is LPX_B_VALID */
/*--------------------------------------------------------------*/
/* LP/MIP solution */
int p_stat;
/* status of primal basic solution: */
#define LPX_P_UNDEF 132 /* primal solution is undefined */
#define LPX_P_FEAS 133 /* solution is primal feasible */
#define LPX_P_INFEAS 134 /* solution is primal infeasible */
#define LPX_P_NOFEAS 135 /* no primal feasible solution exists */
int d_stat;
/* status of dual basic solution: */
#define LPX_D_UNDEF 136 /* dual solution is undefined */
#define LPX_D_FEAS 137 /* solution is dual feasible */
#define LPX_D_INFEAS 138 /* solution is dual infeasible */
#define LPX_D_NOFEAS 139 /* no dual feasible solution exists */
int some;
/* ordinal number of some auxiliary or structural variable which
has certain property, 0 <= some <= m+n */
int t_stat;
/* status of interior-point solution: */
#define LPX_T_UNDEF 150 /* interior solution is undefined */
#define LPX_T_OPT 151 /* interior solution is optimal */
int i_stat;
/* status of integer solution: */
#define LPX_I_UNDEF 170 /* integer solution is undefined */
#define LPX_I_OPT 171 /* integer solution is optimal */
#define LPX_I_FEAS 172 /* integer solution is feasible */
#define LPX_I_NOFEAS 173 /* no integer solution exists */
/*--------------------------------------------------------------*/
/* control parameters and statistics */
int msg_lev;
/* level of messages output by the solver:
0 - no output
1 - error messages only
2 - normal output
3 - full output (includes informational messages) */
int scale;
/* scaling option:
0 - no scaling
1 - equilibration scaling
2 - geometric mean scaling
3 - geometric mean scaling, then equilibration scaling */
int dual;
/* dual simplex option:
0 - do not use the dual simplex
1 - if the initial basic solution being primal infeasible is
dual feasible, use the dual simplex */
int price;
/* pricing option (for both primal and dual simplex):
0 - textbook pricing
1 - steepest edge pricing */
double relax;
/* relaxation parameter used in the ratio test; if it is zero,
the textbook ratio test is used; if it is non-zero (should be
positive), Harris' two-pass ratio test is used; in the latter
case on the first pass basic variables (in the case of primal
simplex) or reduced costs of non-basic variables (in the case
of dual simplex) are allowed to slightly violate their bounds,
but not more than (relax * tol_bnd) or (relax * tol_dj) (thus,
relax is a percentage of tol_bnd or tol_dj) */
double tol_bnd;
/* relative tolerance used to check if the current basic solution
is primal feasible */
double tol_dj;
/* absolute tolerance used to check if the current basic solution
is dual feasible */
double tol_piv;
/* relative tolerance used to choose eligible pivotal elements of
the simplex table in the ratio test */
int round;
/* solution rounding option:
0 - report all computed values and reduced costs "as is"
1 - if possible (allowed by the tolerances), replace computed
values and reduced costs which are close to zero by exact
zeros */
double obj_ll;
/* lower limit of the objective function; if on the phase II the
objective function reaches this limit and continues decreasing,
the solver stops the search */
double obj_ul;
/* upper limit of the objective function; if on the phase II the
objective function reaches this limit and continues increasing,
the solver stops the search */
int it_lim;
/* simplex iterations limit; if this value is positive, it is
decreased by one each time when one simplex iteration has been
performed, and reaching zero value signals the solver to stop
the search; negative value means no iterations limit */
int it_cnt;
/* simplex iterations count; this count is increased by one each
time when one simplex iteration has been performed */
double tm_lim;
/* searching time limit, in seconds; if this value is positive,
it is decreased each time when one simplex iteration has been
performed by the amount of time spent for the iteration, and
reaching zero value signals the solver to stop the search;
negative value means no time limit */
int out_frq;
/* output frequency, in iterations; this parameter specifies how
frequently the solver sends information about the solution to
the standard output */
double out_dly;
/* output delay, in seconds; this parameter specifies how long
the solver should delay sending information about the solution
to the standard output; zero value means no delay */
int branch; /* MIP */
/* branching heuristic:
0 - branch on first variable
1 - branch on last variable
2 - branch using heuristic by Driebeck and Tomlin
3 - branch on most fractional variable */
int btrack; /* MIP */
/* backtracking heuristic:
0 - select most recent node (depth first search)
1 - select earliest node (breadth first search)
2 - select node using the best projection heuristic
3 - select node with best local bound */
double tol_int; /* MIP */
/* absolute tolerance used to check if the current basic solution
is integer feasible */
double tol_obj; /* MIP */
/* relative tolerance used to check if the value of the objective
function is not better than in the best known integer feasible
solution */
int mps_info; /* lpx_write_mps */
/* if this flag is set, the routine lpx_write_mps outputs several
comment cards that contains some information about the problem;
otherwise the routine outputs no comment cards */
int mps_obj; /* lpx_write_mps */
/* this parameter tells the routine lpx_write_mps how to output
the objective function row:
0 - never output objective function row
1 - always output objective function row
2 - output objective function row if and only if the problem
has no free rows */
int mps_orig; /* lpx_write_mps */
/* if this flag is set, the routine lpx_write_mps uses original
row and column symbolic names; otherwise the routine generates
plain names using ordinal numbers of rows and columns */
int mps_wide; /* lpx_write_mps */
/* if this flag is set, the routine lpx_write_mps uses all data
fields; otherwise the routine keeps fields 5 and 6 empty */
int mps_free; /* lpx_write_mps */
/* if this flag is set, the routine lpx_write_mps omits column
and vector names everytime if possible (free style); otherwise
the routine never omits these names (pedantic style) */
int mps_skip; /* lpx_write_mps */
/* if this flag is set, the routine lpx_write_mps skips empty
columns (i.e. which has no constraint coefficients); otherwise
the routine outputs all columns */
int lpt_orig; /* lpx_write_lpt */
/* if this flag is set, the routine lpx_write_lpt uses original
row and column symbolic names; otherwise the routine generates
plain names using ordinal numbers of rows and columns */
int presol; /* lpx_simplex */
/* LP presolver option:
0 - do not use LP presolver
1 - use LP presolver */
#if 1 /* 07/I-2006 */
int binarize; /* lpx_intopt */
/* if this flag is set, the routine lpx_intopt replaces integer
columns by binary ones */
int use_cuts; /* lpx_intopt */
/* if this flag is set, the routine lpx_intopt tries generating
cutting planes: */
#define LPX_C_COVER 0x01 /* mixed cover cuts */
#define LPX_C_CLIQUE 0x02 /* clique cuts */
#define LPX_C_GOMORY 0x04 /* Gomory's mixed integer cuts */
#define LPX_C_ALL 0xFF /* all cuts */
#endif
};
struct LPXROW
{ /* LP row (auxiliary variable) */
int i;
/* ordinal number (1 to m) assigned to this row */
STR *name;
/* row name (1 to 255 chars); NULL means no name is assigned to
this row */
#if 1 /* 15/VIII-2004 */
AVLNODE *node;
/* pointer to corresponding node in the row index; NULL means
that either the row index does not exist or this row has no
name assigned */
#endif
int type;
/* type of the auxiliary variable: */
#define LPX_FR 110 /* free variable */
#define LPX_LO 111 /* variable with lower bound */
#define LPX_UP 112 /* variable with upper bound */
#define LPX_DB 113 /* double-bounded variable */
#define LPX_FX 114 /* fixed variable */
double lb; /* non-scaled */
/* lower bound; if the row has no lower bound, lb is zero */
double ub; /* non-scaled */
/* upper bound; if the row has no upper bound, ub is zero */
/* if the row type is LPX_FX, ub is equal to lb */
LPXAIJ *ptr; /* non-scaled */
/* pointer to doubly linked list of constraint coefficients which
are placed in this row */
double rii;
/* diagonal element r[i,i] of the scaling matrix R (see (17)) for
this row; if the scaling is not used, r[i,i] is 1 */
int stat;
/* status of the auxiliary variable: */
#define LPX_BS 140 /* basic variable */
#define LPX_NL 141 /* non-basic variable on lower bound */
#define LPX_NU 142 /* non-basic variable on upper bound */
#define LPX_NF 143 /* non-basic free variable */
#define LPX_NS 144 /* non-basic fixed variable */
int b_ind;
/* if the auxiliary variable is basic (LPX_BS), lpx.basis[b_ind]
refers to this row; if the auxiliary variable is non-basic,
b_ind is 0; this attribute is valid only if the basis status
is LPX_B_VALID */
double prim; /* non-scaled */
/* primal value of the auxiliary variable in basic solution */
double dual; /* non-scaled */
/* dual value of the auxiliary variable in basic solution */
double pval; /* non-scaled */
/* primal value of the auxiliary variable in interior solution */
double dval; /* non-scaled */
/* dual value of the auxiliary variable in interior solution */
double mipx; /* non-scaled */
/* primal value of the auxiliary variable in integer solution */
};
struct LPXCOL
{ /* LP column (structural variable) */
int j;
/* ordinal number (1 to n) assigned to this column */
STR *name;
/* column name (1 to 255 chars); NULL means no name is assigned
to this column */
#if 1 /* 15/VIII-2004 */
AVLNODE *node;
/* pointer to corresponding node in the column index; NULL means
that either the column index does not exist or the column has
no name assigned */
#endif
int kind;
/* kind of the structural variable: */
#define LPX_CV 160 /* continuous variable */
#define LPX_IV 161 /* integer variable */
int type;
/* type of the structural variable: */
#define LPX_FR 110 /* free variable */
#define LPX_LO 111 /* variable with lower bound */
#define LPX_UP 112 /* variable with upper bound */
#define LPX_DB 113 /* double-bounded variable */
#define LPX_FX 114 /* fixed variable */
double lb; /* non-scaled */
/* lower bound; if the column has no lower bound, lb is zero */
double ub; /* non-scaled */
/* upper bound; if the column has no upper bound, ub is zero */
/* if the column type is LPX_FX, ub is equal to lb */
double coef; /* non-scaled */
/* objective coefficient at the structural variable */
LPXAIJ *ptr; /* non-scaled */
/* pointer to doubly linked list of constraint coefficients which
are placed in this column */
double sjj;
/* diagonal element s[j,j] of the scaling matrix S (see (17)) for
this column; if the scaling is not used, s[j,j] is 1 */
int stat;
/* status of the structural variable: */
#define LPX_BS 140 /* basic variable */
#define LPX_NL 141 /* non-basic variable on lower bound */
#define LPX_NU 142 /* non-basic variable on upper bound */
#define LPX_NF 143 /* non-basic free variable */
#define LPX_NS 144 /* non-basic fixed variable */
int b_ind;
/* if the structural variable is basic (LPX_BS), lpx.basis[b_ind]
refers to this column; if the structural variable is non-basic,
b_ind is 0; this attribute is valid only if the basis status
is LPX_B_VALID */
double prim; /* non-scaled */
/* primal value of the structural variable in basic solution */
double dual; /* non-scaled */
/* dual value of the structural variable in basic solution */
double pval; /* non-scaled */
/* primal value of the structural variable in interior solution */
double dval; /* non-scaled */
/* dual value of the structural variable in interior solution */
double mipx;
/* primal value of the structural variable in integer solution */
};
struct LPXAIJ
{ /* constraint coefficient a[i,j]; see (2) and (5) */
LPXROW *row;
/* pointer to row, where this coefficient is placed */
LPXCOL *col;
/* pointer to column, where this coefficient is placed */
double val;
/* numeric (non-zero) value of this coefficient */
LPXAIJ *r_prev;
/* pointer to previous coefficient in the same row */
LPXAIJ *r_next;
/* pointer to next coefficient in the same row */
LPXAIJ *c_prev;
/* pointer to previous coefficient in the same column */
LPXAIJ *c_next;
/* pointer to next coefficient in the same column */
};
/* status codes reported by the routine lpx_get_status: */
#define LPX_OPT 180 /* optimal */
#define LPX_FEAS 181 /* feasible */
#define LPX_INFEAS 182 /* infeasible */
#define LPX_NOFEAS 183 /* no feasible */
#define LPX_UNBND 184 /* unbounded */
#define LPX_UNDEF 185 /* undefined */
/* exit codes returned by solver routines: */
#define LPX_E_OK 200 /* success */
#define LPX_E_EMPTY 201 /* empty problem */
#define LPX_E_BADB 202 /* invalid initial basis */
#define LPX_E_INFEAS 203 /* infeasible initial solution */
#define LPX_E_FAULT 204 /* unable to start the search */
#define LPX_E_OBJLL 205 /* objective lower limit reached */
#define LPX_E_OBJUL 206 /* objective upper limit reached */
#define LPX_E_ITLIM 207 /* iterations limit exhausted */
#define LPX_E_TMLIM 208 /* time limit exhausted */
#define LPX_E_NOFEAS 209 /* no feasible solution */
#define LPX_E_INSTAB 210 /* numerical instability */
#define LPX_E_SING 211 /* problems with basis matrix */
#define LPX_E_NOCONV 212 /* no convergence (interior) */
#define LPX_E_NOPFS 213 /* no primal feas. sol. (LP presolver) */
#define LPX_E_NODFS 214 /* no dual feas. sol. (LP presolver) */
/* control parameter identifiers: */
#define LPX_K_MSGLEV 300 /* lp->msg_lev */
#define LPX_K_SCALE 301 /* lp->scale */
#define LPX_K_DUAL 302 /* lp->dual */
#define LPX_K_PRICE 303 /* lp->price */
#define LPX_K_RELAX 304 /* lp->relax */
#define LPX_K_TOLBND 305 /* lp->tol_bnd */
#define LPX_K_TOLDJ 306 /* lp->tol_dj */
#define LPX_K_TOLPIV 307 /* lp->tol_piv */
#define LPX_K_ROUND 308 /* lp->round */
#define LPX_K_OBJLL 309 /* lp->obj_ll */
#define LPX_K_OBJUL 310 /* lp->obj_ul */
#define LPX_K_ITLIM 311 /* lp->it_lim */
#define LPX_K_ITCNT 312 /* lp->it_cnt */
#define LPX_K_TMLIM 313 /* lp->tm_lim */
#define LPX_K_OUTFRQ 314 /* lp->out_frq */
#define LPX_K_OUTDLY 315 /* lp->out_dly */
#define LPX_K_BRANCH 316 /* lp->branch */
#define LPX_K_BTRACK 317 /* lp->btrack */
#define LPX_K_TOLINT 318 /* lp->tol_int */
#define LPX_K_TOLOBJ 319 /* lp->tol_obj */
#define LPX_K_MPSINFO 320 /* lp->mps_info */
#define LPX_K_MPSOBJ 321 /* lp->mps_obj */
#define LPX_K_MPSORIG 322 /* lp->mps_orig */
#define LPX_K_MPSWIDE 323 /* lp->mps_wide */
#define LPX_K_MPSFREE 324 /* lp->mps_free */
#define LPX_K_MPSSKIP 325 /* lp->mps_skip */
#define LPX_K_LPTORIG 326 /* lp->lpt_orig */
#define LPX_K_PRESOL 327 /* lp->presol */
#define LPX_K_BINARIZE 328 /* lp->binarize */
#define LPX_K_USECUTS 329 /* lp->use_cuts */
typedef struct LPXKKT LPXKKT;
struct LPXKKT
{ /* this structure contains results reported by the routines which
checks Karush-Kuhn-Tucker conditions (for details see comments
to those routines) */
/*--------------------------------------------------------------*/
/* xR - A * xS = 0 (KKT.PE) */
double pe_ae_max;
/* largest absolute error */
int pe_ae_row;
/* number of row with largest absolute error */
double pe_re_max;
/* largest relative error */
int pe_re_row;
/* number of row with largest relative error */
int pe_quality;
/* quality of primal solution:
'H' - high
'M' - medium
'L' - low
'?' - primal solution is wrong */
/*--------------------------------------------------------------*/
/* l[k] <= x[k] <= u[k] (KKT.PB) */
double pb_ae_max;
/* largest absolute error */
int pb_ae_ind;
/* number of variable with largest absolute error */
double pb_re_max;
/* largest relative error */
int pb_re_ind;
/* number of variable with largest relative error */
int pb_quality;
/* quality of primal feasibility:
'H' - high
'M' - medium
'L' - low
'?' - primal solution is infeasible */
/*--------------------------------------------------------------*/
/* A' * (dR - cR) + (dS - cS) = 0 (KKT.DE) */
double de_ae_max;
/* largest absolute error */
int de_ae_col;
/* number of column with largest absolute error */
double de_re_max;
/* largest relative error */
int de_re_col;
/* number of column with largest relative error */
int de_quality;
/* quality of dual solution:
'H' - high
'M' - medium
'L' - low
'?' - dual solution is wrong */
/*--------------------------------------------------------------*/
/* d[k] >= 0 or d[k] <= 0 (KKT.DB) */
double db_ae_max;
/* largest absolute error */
int db_ae_ind;
/* number of variable with largest absolute error */
double db_re_max;
/* largest relative error */
int db_re_ind;
/* number of variable with largest relative error */
int db_quality;
/* quality of dual feasibility:
'H' - high
'M' - medium
'L' - low
'?' - dual solution is infeasible */
/*--------------------------------------------------------------*/
/* (x[k] - bound of x[k]) * d[k] = 0 (KKT.CS) */
double cs_ae_max;
/* largest absolute error */
int cs_ae_ind;
/* number of variable with largest absolute error */
double cs_re_max;
/* largest relative error */
int cs_re_ind;
/* number of variable with largest relative error */
int cs_quality;
/* quality of complementary slackness:
'H' - high
'M' - medium
'L' - low
'?' - primal and dual solutions are not complementary */
};
/* problem creating and modifying routines ---------------------------*/
LPX *lpx_create_prob(void);
/* create problem object */
void lpx_set_prob_name(LPX *lp, char *name);
/* assign (change) problem name */
void lpx_set_class(LPX *lp, int klass);
/* set (change) problem class */
void lpx_set_obj_name(LPX *lp, char *name);
/* assign (change) objective function name */
void lpx_set_obj_dir(LPX *lp, int dir);
/* set (change) optimization direction flag */
int lpx_add_rows(LPX *lp, int nrs);
/* add new rows to problem object */
int lpx_add_cols(LPX *lp, int ncs);
/* add new columns to problem object */
void lpx_set_row_name(LPX *lp, int i, char *name);
/* assign (change) row name */
void lpx_set_col_name(LPX *lp, int j, char *name);
/* assign (change) column name */
void lpx_set_col_kind(LPX *lp, int j, int kind);
/* set (change) column kind */
void lpx_set_row_bnds(LPX *lp, int i, int type, double lb, double ub);
/* set (change) row bounds */
void lpx_set_col_bnds(LPX *lp, int j, int type, double lb, double ub);
/* set (change) column bounds */
void lpx_set_obj_coef(LPX *lp, int j, double coef);
/* set (change) obj. coefficient or constant term */
void lpx_set_mat_row(LPX *lp, int i, int len, int ind[], double val[]);
/* set (replace) row of the constraint matrix */
void lpx_set_mat_col(LPX *lp, int j, int len, int ind[], double val[]);
/* set (replace) column of the constraint matrix */
void lpx_load_matrix(LPX *lp, int ne, int ia[], int ja[], double ar[]);
/* load (replace) the whole constraint matrix */
void lpx_order_matrix(LPX *lp);
/* order rows and columns of the constraint matrix */
void lpx_set_rii(LPX *lp, int i, double rii);
/* set (change) row scale factor */
void lpx_set_sjj(LPX *lp, int j, double sjj);
/* set (change) column scale factor */
void lpx_set_row_stat(LPX *lp, int i, int stat);
/* set (change) row status */
void lpx_set_col_stat(LPX *lp, int j, int stat);
/* set (change) column status */
void lpx_del_rows(LPX *lp, int nrs, int num[]);
/* delete specified rows from problem object */
void lpx_del_cols(LPX *lp, int ncs, int num[]);
/* delete specified columns from problem object */
void lpx_delete_prob(LPX *lp);
/* delete problem object */
#if 1 /* 15/VIII-2004 */
void lpx_create_index(LPX *lp);
int lpx_find_row(LPX *lp, char *name);
int lpx_find_col(LPX *lp, char *name);
void lpx_delete_index(LPX *lp);
#endif
void lpx_put_lp_basis(LPX *lp, int b_stat, int basis[], BFI *b_inv);
/* store LP basis information */
void lpx_put_solution(LPX *lp, int p_stat, int d_stat,
int row_stat[], double row_prim[], double row_dual[],
int col_stat[], double col_prim[], double col_dual[]);
/* store basic solution components */
void lpx_put_ray_info(LPX *lp, int k);
/* store row/column which causes unboundness */
void lpx_put_ipt_soln(LPX *lp, int t_stat, double row_pval[],
double row_dval[], double col_pval[], double col_dval[]);
/* store interior-point solution components */
void lpx_put_mip_soln(LPX *lp, int i_stat, double row_mipx[],
double col_mipx[]);
/* store mixed integer solution components */
/* problem retrieving routines ---------------------------------------*/
char *lpx_get_prob_name(LPX *lp);
/* retrieve problem name */
int lpx_get_class(LPX *lp);
/* retrieve problem class */
char *lpx_get_obj_name(LPX *lp);
/* retrieve objective function name */
int lpx_get_obj_dir(LPX *lp);
/* retrieve optimization direction flag */
int lpx_get_num_rows(LPX *lp);
/* retrieve number of rows */
int lpx_get_num_cols(LPX *lp);
/* retrieve number of columns */
int lpx_get_num_int(LPX *lp);
/* retrieve number of integer columns */
int lpx_get_num_bin(LPX *lp);
/* retrieve number of binary columns */
char *lpx_get_row_name(LPX *lp, int i);
/* retrieve row name */
char *lpx_get_col_name(LPX *lp, int j);
/* retrieve column name */
int lpx_get_col_kind(LPX *lp, int j);
/* retrieve column kind */
int lpx_get_row_type(LPX *lp, int i);
/* retrieve row type */
double lpx_get_row_lb(LPX *lp, int i);
/* retrieve row lower bound */
double lpx_get_row_ub(LPX *lp, int i);
/* retrieve row upper bound */
int lpx_get_col_type(LPX *lp, int j);
/* retrieve column type */
double lpx_get_col_lb(LPX *lp, int j);
/* retrieve column lower bound */
double lpx_get_col_ub(LPX *lp, int j);
/* retrieve column upper bound */
double lpx_get_obj_coef(LPX *lp, int j);
/* retrieve obj. coefficient or constant term */
int lpx_get_num_nz(LPX *lp);
/* retrieve number of constraint coefficients */
int lpx_get_mat_row(LPX *lp, int i, int ind[], double val[]);
/* retrieve row of the constraint matrix */
int lpx_get_mat_col(LPX *lp, int j, int ind[], double val[]);
/* retrieve column of the constraint matrix */
double lpx_get_rii(LPX *lp, int i);
/* retrieve row scale factor */
double lpx_get_sjj(LPX *lp, int j);
/* retrieve column scale factor */
int lpx_is_b_avail(LPX *lp);
/* check if LP basis is available */
int lpx_get_b_info(LPX *lp, int i);
/* retrieve LP basis information */
int lpx_get_row_b_ind(LPX *lp, int i);
/* retrieve row index in LP basis */
int lpx_get_col_b_ind(LPX *lp, int j);
/* retrieve column index in LP basis */
BFI *lpx_access_inv(LPX *lp);
/* access factorization of basis matrix */
int lpx_get_status(LPX *lp);
/* retrieve generic status of basic solution */
int lpx_get_prim_stat(LPX *lp);
/* retrieve primal status of basic solution */
int lpx_get_dual_stat(LPX *lp);
/* retrieve dual status of basic solution */
double lpx_get_obj_val(LPX *lp);
/* retrieve objective value (basic solution) */
int lpx_get_row_stat(LPX *lp, int i);
/* retrieve row status (basic solution) */
double lpx_get_row_prim(LPX *lp, int i);
/* retrieve row primal value (basic solution) */
double lpx_get_row_dual(LPX *lp, int i);
/* retrieve row dual value (basic solution) */
int lpx_get_col_stat(LPX *lp, int j);
/* retrieve column status (basic solution) */
double lpx_get_col_prim(LPX *lp, int j);
/* retrieve column primal value (basic solution) */
double lpx_get_col_dual(LPX *lp, int j);
/* retrieve column dual value (basic solution) */
int lpx_get_ray_info(LPX *lp);
/* determine what causes primal unboundness */
int lpx_ipt_status(LPX *lp);
/* retrieve status of interior-point solution */
double lpx_ipt_obj_val(LPX *lp);
/* retrieve objective value (interior point) */
double lpx_ipt_row_prim(LPX *lp, int i);
/* retrieve row primal value (interior point) */
double lpx_ipt_row_dual(LPX *lp, int i);
/* retrieve row dual value (interior point) */
double lpx_ipt_col_prim(LPX *lp, int j);
/* retrieve column primal value (interior point) */
double lpx_ipt_col_dual(LPX *lp, int j);
/* retrieve column dual value (interior point) */
int lpx_mip_status(LPX *lp);
/* retrieve status of MIP solution */
double lpx_mip_obj_val(LPX *lp);
/* retrieve objective value (MIP solution) */
double lpx_mip_row_val(LPX *lp, int i);
/* retrieve row value (MIP solution) */
double lpx_mip_col_val(LPX *lp, int j);
/* retrieve column value (MIP solution) */
void lpx_get_row_bnds(LPX *lp, int i, int *typx, double *lb,
double *ub);
/* obtain row bounds */
void lpx_get_col_bnds(LPX *lp, int j, int *typx, double *lb,
double *ub);
/* obtain column bounds */
void lpx_get_row_info(LPX *lp, int i, int *tagx, double *vx,
double *dx);
/* obtain row solution information */
void lpx_get_col_info(LPX *lp, int j, int *tagx, double *vx,
double *dx);
/* obtain column solution information */
/* control parameters and statistics routines ------------------------*/
void lpx_reset_parms(LPX *lp);
/* reset control parameters to default values */
void lpx_set_int_parm(LPX *lp, int parm, int val);
/* set (change) integer control parameter */
int lpx_get_int_parm(LPX *lp, int parm);
/* query integer control parameter */
void lpx_set_real_parm(LPX *lp, int parm, double val);
/* set (change) real control parameter */
double lpx_get_real_parm(LPX *lp, int parm);
/* query real control parameter */
/* problem scaling routines ------------------------------------------*/
void lpx_scale_prob(LPX *lp);
/* scale problem data */
void lpx_unscale_prob(LPX *lp);
/* unscale problem data */
/* LP basis constructing routines ------------------------------------*/
void lpx_std_basis(LPX *lp);
/* construct standard initial LP basis */
void lpx_adv_basis(LPX *lp);
/* construct advanced initial LP basis */
void lpx_cpx_basis(LPX *lp);
/* construct Bixby's initial LP basis */
/* solver routines ---------------------------------------------------*/
int lpx_simplex(LPX *lp);
/* easy-to-use driver to the simplex method */
void lpx_check_kkt(LPX *lp, int scaled, LPXKKT *kkt);
/* check Karush-Kuhn-Tucker conditions */
int lpx_interior(LPX *lp);
/* easy-to-use driver to the interior point method */
int lpx_integer(LPX *lp);
/* easy-to-use driver to the branch-and-bound method */
void lpx_check_int(LPX *lp, LPXKKT *kkt);
/* check integer feasibility conditions */
int lpx_intopt(LPX *mip);
/* easy-to-use driver to the branch-and-bound method */
int lpx_primal(LPX *lp);
/* easy-to-use driver to the primal simplex method */
/* LP basis and simplex table routines -------------------------------*/
int lpx_invert(LPX *lp);
/* compute factorization of basis matrix */
void lpx_ftran(LPX *lp, double x[]);
/* forward transformation (solve system B*x = b) */
void lpx_btran(LPX *lp, double x[]);
/* backward transformation (solve system B'*x = b) */
void lpx_eval_b_prim(LPX *lp, double row_prim[], double col_prim[]);
/* compute primal basic solution components */
void lpx_eval_b_dual(LPX *lp, double row_dual[], double col_dual[]);
/* compute dual basic solution components */
int lpx_warm_up(LPX *lp);
/* "warm up" LP basis */
int lpx_eval_tab_row(LPX *lp, int k, int ind[], double val[]);
/* compute row of the simplex table */
int lpx_eval_tab_col(LPX *lp, int k, int ind[], double val[]);
/* compute column of the simplex table */
int lpx_transform_row(LPX *lp, int len, int ind[], double val[]);
/* transform explicitly specified row */
int lpx_transform_col(LPX *lp, int len, int ind[], double val[]);
/* transform explicitly specified column */
int lpx_prim_ratio_test(LPX *lp, int len, int ind[], double val[],
int how, double tol);
/* perform primal ratio test */
int lpx_dual_ratio_test(LPX *lp, int len, int ind[], double val[],
int how, double tol);
/* perform dual ratio test */
/*--------------------------------------------------------------------*/
int lpx_remove_tiny(int ne, int ia[], int ja[], double ar[],
double eps);
/* remove zero and tiny elements */
int lpx_reduce_form(LPX *lp, int len, int ind[], double val[],
double work[]);
/* reduce linear form */
double lpx_eval_row(LPX *lp, int len, int ind[], double val[]);
/* compute explicitly specified row */
double lpx_eval_degrad(LPX *lp, int len, int ind[], double val[],
int type, double rhs);
/* compute degradation of the objective function */
int lpx_gomory_cut(LPX *lp, int len, int ind[], double val[],
double work[]);
/* generate Gomory's mixed integer cut */
int lpx_cover_cut(LPX *lp, int len, int ind[], double val[],
double work[]);
/* generate mixed cover cut */
/*--------------------------------------------------------------------*/
void *lpx_create_cog(LPX *lp);
/* create the conflict graph */
void lpx_add_cog_edge(void *cog, int i, int j);
/* add edge to the conflict graph */
int lpx_clique_cut(LPX *lp, void *cog, int ind[], double val[]);
/* generate clique cut */
void lpx_delete_cog(void *cog);
/* delete the conflict graph */
/* additional utility routines ---------------------------------------*/
LPX *lpx_read_mps(char *fname);
/* read problem data in fixed MPS format */
int lpx_write_mps(LPX *lp, char *fname);
/* write problem data in fixed MPS format */
int lpx_read_bas(LPX *lp, char *fname);
/* read LP basis in fixed MPS format */
int lpx_write_bas(LPX *lp, char *fname);
/* write LP basis in fixed MPS format */
LPX *lpx_read_freemps(char *fname);
/* read problem data in free MPS format */
int lpx_write_freemps(LPX *lp, char *fname);
/* write problem data in free MPS format */
int lpx_print_prob(LPX *lp, char *fname);
/* write problem data in plain text format */
int lpx_print_sol(LPX *lp, char *fname);
/* write LP problem solution in printable format */
int lpx_print_ips(LPX *lp, char *fname);
/* write interior point solution in printable format */
int lpx_print_mip(LPX *lp, char *fname);
/* write MIP problem solution in printable format */
int lpx_print_sens_bnds(LPX *lp, char *fname);
/* write bounds sensitivity information */
LPX *lpx_read_cpxlp(char *fname);
/* read problem data in CPLEX LP format */
int lpx_write_cpxlp(LPX *lp, char *fname);
/* write problem data in CPLEX LP format */
LPX *lpx_extract_prob(void *mpl);
/* extract problem instance from MathProg model */
LPX *lpx_read_model(char *model, char *data, char *output);
/* read LP/MIP model written in GNU MathProg language */
LPX *lpx_read_prob(char *fname);
/* read problem data in GNU LP format */
int lpx_write_prob(LPX *lp, char *fname);
/* write problem data in GNU LP format */
#endif
/* eof */
|