1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053 3054 3055 3056 3057 3058 3059 3060 3061 3062 3063 3064 3065 3066 3067 3068 3069 3070 3071 3072 3073 3074 3075 3076 3077 3078 3079 3080 3081 3082 3083 3084 3085 3086 3087 3088 3089 3090 3091 3092 3093 3094 3095 3096 3097 3098 3099 3100 3101 3102 3103 3104 3105 3106 3107 3108 3109 3110 3111 3112 3113 3114 3115 3116 3117 3118 3119 3120 3121 3122 3123 3124 3125 3126 3127 3128 3129 3130 3131 3132 3133 3134 3135 3136 3137 3138 3139 3140 3141 3142 3143 3144 3145 3146 3147 3148 3149 3150 3151 3152 3153 3154 3155 3156 3157 3158 3159 3160 3161 3162 3163 3164 3165 3166 3167 3168 3169 3170 3171 3172 3173 3174 3175 3176 3177 3178 3179 3180 3181 3182 3183 3184 3185 3186 3187 3188 3189 3190 3191 3192 3193 3194 3195 3196 3197 3198 3199 3200 3201 3202 3203 3204 3205 3206 3207 3208 3209 3210 3211 3212 3213 3214 3215 3216 3217 3218 3219 3220 3221 3222 3223 3224 3225 3226 3227 3228 3229 3230 3231 3232 3233 3234 3235 3236 3237 3238 3239 3240 3241 3242 3243 3244 3245 3246 3247 3248 3249 3250 3251 3252 3253 3254 3255 3256 3257 3258 3259 3260 3261 3262 3263 3264 3265 3266 3267 3268 3269 3270 3271 3272 3273 3274 3275 3276 3277 3278 3279 3280 3281 3282 3283 3284 3285 3286 3287 3288 3289 3290 3291 3292 3293 3294 3295 3296 3297 3298 3299 3300 3301 3302 3303 3304 3305 3306 3307 3308 3309 3310 3311 3312 3313 3314 3315 3316 3317 3318 3319 3320 3321 3322 3323 3324 3325 3326 3327 3328 3329 3330 3331 3332 3333 3334 3335 3336 3337 3338 3339 3340 3341 3342 3343 3344 3345 3346 3347 3348 3349 3350 3351 3352 3353 3354 3355 3356 3357 3358 3359 3360 3361 3362 3363 3364 3365 3366 3367 3368 3369 3370 3371 3372 3373 3374 3375 3376 3377 3378 3379 3380 3381 3382 3383 3384 3385 3386 3387 3388 3389 3390 3391 3392 3393 3394 3395 3396 3397 3398 3399 3400 3401 3402 3403 3404 3405 3406
|
%* glpk02.tex *%
\chapter{Basic API Routines}
This chapter describes GLPK API routines intended for using in
application programs.
\subsubsection*{Library header}
All GLPK API data types and routines are defined in the header file
\verb|glpk.h|. It should be included in all source files which use
GLPK API, either directly or indirectly through some other header file
as follows:
\begin{verbatim}
#include <glpk.h>
\end{verbatim}
\subsubsection*{Error handling}
If some GLPK API routine detects erroneous or incorrect data passed by
the application program, it writes appropriate diagnostic messages to
the terminal and then abnormally terminates the application program.
In most practical cases this allows to simplify programming by avoiding
numerous checks of return codes. Thus, in order to prevent crashing the
application program should check all data, which are suspected to be
incorrect, before calling GLPK API routines.
Should note that this kind of error handling is used only in cases of
incorrect data passed by the application program. If, for example, the
application program calls some GLPK API routine to read data from an
input file and these data are incorrect, the GLPK API routine reports
about error in the usual way by means of the return code.
\subsubsection*{Thread safety}
Currently GLPK API routines are non-reentrant and therefore cannot be
used in multi-threaded programs.
\subsubsection*{Array indexing}
Normally all GLPK API routines start array indexing from 1, not from 0
(except the specially stipulated cases). This means, for example, that
if some vector $x$ of the length $n$ is passed as an array to some GLPK
API routine, the latter expects vector components to be placed in
locations \verb|x[1]|, \verb|x[2]|, \dots, \verb|x[n]|, and the location
\verb|x[0]| normally is not used.
In order to avoid indexing errors it is most convenient and most
reliable to declare the array \verb|x| as follows:
\begin{verbatim}
double x[1+n];
\end{verbatim}
\noindent
or to allocate it as follows:
\begin{verbatim}
double *x;
. . .
x = calloc(1+n, sizeof(double));
\end{verbatim}
\noindent
In both cases one extra location \verb|x[0]| is reserved that allows
passing the array to GLPK routines in a usual way.
\section{Problem object}
All GLPK API routines deal with so called {\it problem object}, which
is a program object of type \verb|glp_prob| and intended to represent
a particular LP or MIP instance.
The type \verb|glp_prob| is a data structure declared in the header
file \verb|glpk.h| as follows:
\begin{verbatim}
typedef struct { ... } glp_prob;
\end{verbatim}
Problem objects (i.e. program objects of the \verb|glp_prob| type) are
allocated and managed internally by the GLPK API routines. The
application program should never use any members of the \verb|glp_prob|
structure directly and should deal only with pointers to these objects
(that is, \verb|glp_prob *| values).
\pagebreak
The problem object consists of five segments, which are:
$\bullet$ problem segment,
$\bullet$ basis segment,
$\bullet$ interior point segment,
$\bullet$ MIP segment, and
$\bullet$ control parameters and statistics segment.
\subsubsection*{Problem segment}
The {\it problem segment} contains original LP/MIP data, which
corresponds to the problem formulation (1.1)---(1.3) (see Section
\ref{seclp}, page \pageref{seclp}). It includes the following
components:
$\bullet$ rows (auxiliary variables),
$\bullet$ columns (structural variables),
$\bullet$ objective function, and
$\bullet$ constraint matrix.
Rows and columns have the same set of the following attributes:
$\bullet$ ordinal number,
$\bullet$ symbolic name (1 up to 255 arbitrary graphic characters),
$\bullet$ type (free, lower bound, upper bound, double bound, fixed),
$\bullet$ numerical values of lower and upper bounds,
$\bullet$ scale factor.
{\it Ordinal numbers} are intended for referencing rows and columns.
Row ordinal numbers are integers $1, 2, \dots, m$, and column ordinal
numbers are integers $1, 2, \dots, n$, where $m$ and $n$ are,
respectively, the current number of rows and columns in the problem
object.
{\it Symbolic names} are intended for informational purposes. They also
can be used for referencing rows and columns.
{\it Types and bounds} of rows (auxiliary variables) and columns
(structural variables) are explained above (see Section \ref{seclp},
page \pageref{seclp}).
{\it Scale factors} are used internally for scaling rows and columns of
the constraint matrix.
Information about the {\it objective function} includes numerical
values of objective coefficients and a flag, which defines the
optimization direction (i.e. minimization or maximization).
The {\it constraint matrix} is a $m \times n$ rectangular matrix built
of constraint coefficients $a_{ij}$, which defines the system of linear
constraints (1.2) (see Section \ref{seclp}, page \pageref{seclp}). This
matrix is stored in the problem object in both row-wise and column-wise
sparse formats.
Once the problem object has been created, the application program can
access and modify any components of the problem segment in arbitrary
order.
\subsubsection*{Basis segment}
The {\it basis segment} of the problem object keeps information related
to the current basic solution. It includes:
$\bullet$ row and column statuses,
$\bullet$ basic solution statuses,
$\bullet$ factorization of the current basis matrix, and
$\bullet$ basic solution components.
The {\it row and column statuses} define which rows and columns are
basic and which are non-basic. These statuses may be assigned either by
the application program of by some API routines. Note that these
statuses are always defined independently on whether the corresponding
basis is valid or not.
The {\it basic solution statuses} include the {\it primal status} and
the {\it dual status}, which are set by the simplex-based solver once
the problem has been solved. The primal status shows whether a primal
basic solution is feasible, infeasible, or undefined. The dual status
shows the same for a dual basic solution.
The {\it factorization of the basis matrix} is some factorized form
(like LU-factorization) of the current basis matrix (defined by the
current row and column statuses). The factorization is used by the
simplex-based solver and kept when the solver terminates the search.
This feature allows efficiently reoptimizing the problem after some
modifications (for example, after changing some bounds or objective
coefficients). It also allows performing the post-optimal analysis (for
example, computing components of the simplex table, etc.).
The {\it basic solution components} include primal and dual values of
all auxiliary and structural variables for the most recently obtained
basic solution.
\subsubsection*{Interior point segment}
The {\it interior point segment} is automatically allocated after the
problem has been solved using the interior point solver. It contains
interior point solution components, which include the solution status,
and primal and dual values of all auxiliary and structural variables.
\subsubsection*{MIP segment}
The {\it MIP segment} is used only for MIP problems. This segment
includes:
$\bullet$ column kinds,
$\bullet$ MIP solution status, and
$\bullet$ MIP solution components.
The {\it column kinds} define which columns (i.e. structural variables)
are integer and which are continuous.
The {\it MIP solution status} is set by the MIP solver and shows whether
a MIP solution is integer optimal, integer feasible (non-optimal), or
undefined.
The {\it MIP solution components} are computed by the MIP solver and
include primal values of all auxiliary and structural variables for the
most recently obtained MIP solution.
Note that in case of MIP problem the basis segment corresponds to
the optimal solution of LP relaxation, which is also available to the
application program.
Currently the search tree is not kept in the MIP segment. Therefore if
the search has been terminated, it cannot be continued.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newpage
\section{Problem creating and modifying routines}
\subsection{glp\_create\_prob---create problem object}
\subsubsection*{Synopsis}
\begin{verbatim}
glp_prob *glp_create_prob(void);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_create_prob| creates a new problem object, which
initially is ``empty'', i.e. has no rows and columns.
\subsubsection*{Returns}
The routine returns a pointer to the created object, which should be
used in any subsequent operations on this object.
\subsection{glp\_set\_prob\_name---assign (change) problem name}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_set_prob_name(glp_prob *lp, const char *name);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_set_prob_name| assigns a given symbolic
\verb|name| (1 up to 255 characters) to the specified problem object.
If the parameter \verb|name| is \verb|NULL| or empty string, the routine
erases an existing symbolic name of the problem object.
\subsection{glp\_set\_obj\_name---assign (change) objective function
name}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_set_obj_name(glp_prob *lp, const char *name);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_set_obj_name| assigns a given symbolic
\verb|name| (1 up to 255 characters) to the objective function of the
specified problem object.
If the parameter \verb|name| is \verb|NULL| or empty string, the routine
erases an existing symbolic name of the objective function.
\subsection{glp\_set\_obj\_dir---set (change) optimization direction\\
flag}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_set_obj_dir(glp_prob *lp, int dir);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_set_obj_dir| sets (changes) the optimization
direction flag (i.e. ``sense'' of the objective function) as specified
by the parameter \verb|dir|:
\begin{tabular}{@{}ll}
\verb|GLP_MIN| & minimization; \\
\verb|GLP_MAX| & maximization. \\
\end{tabular}
\noindent
(Note that by default the problem is minimization.)
\subsection{glp\_add\_rows---add new rows to problem object}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_add_rows(glp_prob *lp, int nrs);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_add_rows| adds \verb|nrs| rows (constraints) to
the specified problem object. New rows are always added to the end of
the row list, so the ordinal numbers of existing rows are not changed.
Being added each new row is initially free (unbounded) and has empty
list of the constraint coefficients.
\subsubsection*{Returns}
The routine \verb|glp_add_rows| returns the ordinal number of the first
new row added to the problem object.
\newpage
\subsection{glp\_add\_cols---add new columns to problem object}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_add_cols(glp_prob *lp, int ncs);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_add_cols| adds \verb|ncs| columns (structural
variables) to the specified problem object. New columns are always added
to the end of the column list, so the ordinal numbers of existing
columns are not changed.
Being added each new column is initially fixed at zero and has empty
list of the constraint coefficients.
\subsubsection*{Returns}
The routine \verb|glp_add_cols| returns the ordinal number of the first
new column added to the problem object.
\subsection{glp\_set\_row\_name---assign (change) row name}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_set_row_name(glp_prob *lp, int i, const char *name);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_set_row_name| assigns a given symbolic
\verb|name| (1 up to 255 characters) to \verb|i|-th row (auxiliary
variable) of the specified problem object.
If the parameter \verb|name| is \verb|NULL| or empty string, the routine
erases an existing name of $i$-th row.
\subsection{glp\_set\_col\_name---assign (change) column name}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_set_col_name(glp_prob *lp, int j, const char *name);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_set_col_name| assigns a given symbolic
\verb|name| (1 up to 255 characters) to \verb|j|-th column (structural
variable) of the specified problem object.
If the parameter \verb|name| is \verb|NULL| or empty string, the routine
erases an existing name of $j$-th column.
\subsection{glp\_set\_row\_bnds---set (change) row bounds}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_set_row_bnds(glp_prob *lp, int i, int type,
double lb, double ub);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_set_row_bnds| sets (changes) the type and bounds
of \verb|i|-th row (auxiliary variable) of the specified problem object.
The parameters \verb|type|, \verb|lb|, and \verb|ub| specify the type,
lower bound, and upper bound, respectively, as follows:
\begin{center}
\begin{tabular}{cr@{}c@{}ll}
Type & \multicolumn{3}{c}{Bounds} & Comment \\
\hline
\verb|GLP_FR| & $-\infty <$ &$\ x\ $& $< +\infty$
& Free (unbounded) variable \\
\verb|GLP_LO| & $lb \leq$ &$\ x\ $& $< +\infty$
& Variable with lower bound \\
\verb|GLP_UP| & $-\infty <$ &$\ x\ $& $\leq ub$
& Variable with upper bound \\
\verb|GLP_DB| & $lb \leq$ &$\ x\ $& $\leq ub$
& Double-bounded variable \\
\verb|GLP_FX| & $lb =$ &$\ x\ $& $= ub$
& Fixed variable \\
\end{tabular}
\end{center}
\noindent
where $x$ is the auxiliary variable associated with $i$-th row.
If the row has no lower bound, the parameter \verb|lb| is ignored. If
the row has no upper bound, the parameter \verb|ub| is ignored. If the
row is an equality constraint (i.e. the corresponding auxiliary variable
is of fixed type), only the parameter \verb|lb| is used while the
parameter \verb|ub| is ignored.
Being added to the problem object each row is initially free, i.e. its
type is \verb|GLP_FR|.
\newpage
\subsection{glp\_set\_col\_bnds---set (change) column bounds}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_set_col_bnds(glp_prob *lp, int j, int type,
double lb, double ub);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_set_col_bnds| sets (changes) the type and bounds
of \verb|j|-th column (structural variable) of the specified problem
object.
The parameters \verb|type|, \verb|lb|, and \verb|ub| specify the type,
lower bound, and upper bound, respectively, as follows:
\begin{center}
\begin{tabular}{cr@{}c@{}ll}
Type & \multicolumn{3}{c}{Bounds} & Comment \\
\hline
\verb|GLP_FR| & $-\infty <$ &$\ x\ $& $< +\infty$
& Free (unbounded) variable \\
\verb|GLP_LO| & $lb \leq$ &$\ x\ $& $< +\infty$
& Variable with lower bound \\
\verb|GLP_UP| & $-\infty <$ &$\ x\ $& $\leq ub$
& Variable with upper bound \\
\verb|GLP_DB| & $lb \leq$ &$\ x\ $& $\leq ub$
& Double-bounded variable \\
\verb|GLP_FX| & $lb =$ &$\ x\ $& $= ub$
& Fixed variable \\
\end{tabular}
\end{center}
\noindent
where $x$ is the structural variable associated with $j$-th column.
If the column has no lower bound, the parameter \verb|lb| is ignored.
If the column has no upper bound, the parameter \verb|ub| is ignored.
If the column is of fixed type, only the parameter \verb|lb| is used
while the parameter \verb|ub| is ignored.
Being added to the problem object each column is initially fixed at
zero, i.e. its type is \verb|GLP_FX| and both bounds are 0.
\subsection{glp\_set\_obj\_coef---set (change) objective coefficient
or constant term}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_set_obj_coef(glp_prob *lp, int j, double coef);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_set_obj_coef| sets (changes) the objective
coefficient at \verb|j|-th column (structural variable). A new value of
the objective coefficient is specified by the parameter \verb|coef|.
If the parameter \verb|j| is 0, the routine sets (changes) the constant
term (``shift'') of the objective function.
\subsection{glp\_set\_mat\_row---set (replace) row of the constraint
matrix}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_set_mat_row(glp_prob *lp, int i, int len,
const int ind[], const double val[]);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_set_mat_row| stores (replaces) the contents of
\verb|i|-th row of the constraint matrix of the specified problem
object.
Column indices and numerical values of new row elements must be placed
in locations \verb|ind[1]|, \dots, \verb|ind[len]| and \verb|val[1]|,
\dots, \verb|val[len]|, respectively, where $0 \leq$ \verb|len| $\leq n$
is the new length of $i$-th row, $n$ is the current number of columns in
the problem object. Elements with identical column indices are not
allowed. Zero elements are allowed, but they are not stored in the
constraint matrix.
If the parameter \verb|len| is 0, the parameters \verb|ind| and/or
\verb|val| can be specified as \verb|NULL|.
\subsection{glp\_set\_mat\_col---set (replace) column of the
constr\-aint matrix}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_set_mat_col(glp_prob *lp, int j, int len,
const int ind[], const double val[]);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_set_mat_col| stores (replaces) the contents of
\verb|j|-th column of the constraint matrix of the specified problem
object.
Row indices and numerical values of new column elements must be placed
in locations \verb|ind[1]|, \dots, \verb|ind[len]| and \verb|val[1]|,
\dots, \verb|val[len]|, respectively, where $0 \leq$ \verb|len| $\leq m$
is the new length of $j$-th column, $m$ is the current number of rows in
the problem object. Elements with identical row indices are not allowed.
Zero elements are allowed, but they are not stored in the constraint
matrix.
If the parameter \verb|len| is 0, the parameters \verb|ind| and/or
\verb|val| can be specified as \verb|NULL|.
\subsection{glp\_load\_matrix---load (replace) the whole constraint
matrix}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_load_matrix(glp_prob *lp, int ne, const int ia[],
const int ja[], const double ar[]);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_load_matrix| loads the constraint matrix passed
in the arrays \verb|ia|, \verb|ja|, and \verb|ar| into the specified
problem object. Before loading the current contents of the constraint
matrix is destroyed.
Constraint coefficients (elements of the constraint matrix) must be
specified as triplets (\verb|ia[k]|, \verb|ja[k]|, \verb|ar[k]|) for
$k=1,\dots,ne$, where \verb|ia[k]| is the row index, \verb|ja[k]| is
the column index, and \verb|ar[k]| is a numeric value of corresponding
constraint coefficient. The parameter \verb|ne| specifies the total
number of (non-zero) elements in the matrix to be loaded. Coefficients
with identical indices are not allowed. Zero coefficients are allowed,
however, they are not stored in the constraint matrix.
If the parameter \verb|ne| is 0, the parameters \verb|ia|, \verb|ja|,
and/or \verb|ar| can be specified as \verb|NULL|.
\subsection{glp\_check\_dup---check for duplicate elements in sparse
matrix}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_check_dup(int m, int n, int ne, const int ia[],
const int ja[]);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_check_dup checks| for duplicate elements (that
is, elements with identical indices) in a sparse matrix specified in
the coordinate format.
The parameters $m$ and $n$ specifies, respectively, the number of rows
and columns in the matrix, $m\geq 0$, $n\geq 0$.
The parameter {\it ne} specifies the number of (structurally) non-zero
elements in the matrix, {\it ne} $\geq 0$.
Elements of the matrix are specified as doublets $(ia[k],ja[k])$ for
$k=1,\dots,ne$, where $ia[k]$ is a row index, $ja[k]$ is a column index.
The routine \verb|glp_check_dup| can be used prior to a call to the
routine \verb|glp_load_matrix| to check that the constraint matrix to
be loaded has no duplicate elements.
\subsubsection*{Returns}
The routine \verb|glp_check_dup| returns one of the following values:
\noindent
\begin{tabular}{@{}r@{\ }c@{\ }l@{}}
0&---&the matrix has no duplicate elements;\\
$-k$&---&indices $ia[k]$ or/and $ja[k]$ are out of range;\\
$+k$&---&element $(ia[k],ja[k])$ is duplicate.\\
\end{tabular}
\subsection{glp\_sort\_matrix---sort elements of the constraint matrix}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_sort_matrix(glp_prob *P);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_sort_matrix| sorts elements of the constraint
matrix rebuilding its row and column linked lists. On exit from the
routine the constraint matrix is not changed, however, elements in the
row linked lists become ordered by ascending column indices, and the
elements in the column linked lists become ordered by ascending row
indices.
\subsection{glp\_del\_rows---delete rows from problem object}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_del_rows(glp_prob *lp, int nrs, const int num[]);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_del_rows| deletes rows from the specified problem
ob-\linebreak ject. Ordinal numbers of rows to be deleted should be
placed in locations \verb|num[1]|, \dots, \verb|num[nrs]|, where
${\tt nrs}>0$.
Note that deleting rows involves changing ordinal numbers of other
rows remaining in the problem object. New ordinal numbers of the
remaining rows are assigned under the assumption that the original
order of rows is not changed. Let, for example, before deletion there
be five rows $a$, $b$, $c$, $d$, $e$ with ordinal numbers 1, 2, 3, 4, 5,
and let rows $b$ and $d$ have been deleted. Then after deletion the
remaining rows $a$, $c$, $e$ are assigned new oridinal numbers 1, 2, 3.
\subsection{glp\_del\_cols---delete columns from problem object}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_del_cols(glp_prob *lp, int ncs, const int num[]);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_del_cols| deletes columns from the specified
problem object. Ordinal numbers of columns to be deleted should be
placed in locations \verb|num[1]|, \dots, \verb|num[ncs]|, where
${\tt ncs}>0$.
Note that deleting columns involves changing ordinal numbers of other
columns remaining in the problem object. New ordinal numbers of the
remaining columns are assigned under the assumption that the original
order of columns is not changed. Let, for example, before deletion there
be six columns $p$, $q$, $r$, $s$, $t$, $u$ with ordinal numbers 1, 2,
3, 4, 5, 6, and let columns $p$, $q$, $s$ have been deleted. Then after
deletion the remaining columns $r$, $t$, $u$ are assigned new ordinal
numbers 1, 2, 3.
\subsection{glp\_copy\_prob---copy problem object content}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_copy_prob(glp_prob *dest, glp_prob *prob, int names);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_copy_prob| copies the content of the problem
object \verb|prob| to the problem object \verb|dest|.
The parameter \verb|names| is a flag. If it is \verb|GLP_ON|,
the routine also copies all symbolic names; otherwise, if it is
\verb|GLP_OFF|, no symbolic names are copied.
\newpage
\subsection{glp\_erase\_prob---erase problem object content}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_erase_prob(glp_prob *lp);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_erase_prob| erases the content of the specified
problem object. The effect of this operation is the same as if the
problem object would be deleted with the routine \verb|glp_delete_prob|
and then created anew with the routine \verb|glp_create_prob|, with the
only exception that the handle (pointer) to the problem object remains
valid.
\subsection{glp\_delete\_prob---delete problem object}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_delete_prob(glp_prob *lp);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_delete_prob| deletes a problem object, which the
parameter \verb|lp| points to, freeing all the memory allocated to this
object.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newpage
\section{Problem retrieving routines}
\subsection{glp\_get\_prob\_name---retrieve problem name}
\subsubsection*{Synopsis}
\begin{verbatim}
const char *glp_get_prob_name(glp_prob *lp);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_prob_name| returns a pointer to an internal
buffer, which contains symbolic name of the problem. However, if the
problem has no assigned name, the routine returns \verb|NULL|.
\subsection{glp\_get\_obj\_name---retrieve objective function name}
\subsubsection*{Synopsis}
\begin{verbatim}
const char *glp_get_obj_name(glp_prob *lp);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_obj_name| returns a pointer to an internal
buffer, which contains symbolic name assigned to the objective
function. However, if the objective function has no assigned name, the
routine returns \verb|NULL|.
\subsection{glp\_get\_obj\_dir---retrieve optimization direction flag}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_get_obj_dir(glp_prob *lp);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_obj_dir| returns the optimization direction
flag (i.e. ``sense'' of the objective function):
\begin{tabular}{@{}ll}
\verb|GLP_MIN| & minimization; \\
\verb|GLP_MAX| & maximization. \\
\end{tabular}
\pagebreak
\subsection{glp\_get\_num\_rows---retrieve number of rows}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_get_num_rows(glp_prob *lp);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_num_rows| returns the current number of rows
in the specified problem object.
\subsection{glp\_get\_num\_cols---retrieve number of columns}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_get_num_cols(glp_prob *lp);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_num_cols| returns the current number of
columns the specified problem object.
\subsection{glp\_get\_row\_name---retrieve row name}
\subsubsection*{Synopsis}
\begin{verbatim}
const char *glp_get_row_name(glp_prob *lp, int i);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_row_name| returns a pointer to an internal
buffer, which contains a symbolic name assigned to \verb|i|-th row.
However, if the row has no assigned name, the routine returns
\verb|NULL|.
\subsection{glp\_get\_col\_name---retrieve column name}
\subsubsection*{Synopsis}
\begin{verbatim}
const char *glp_get_col_name(glp_prob *lp, int j);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_col_name| returns a pointer to an internal
buffer, which contains a symbolic name assigned to \verb|j|-th column.
However, if the column has no assigned name, the routine returns
\verb|NULL|.
\subsection{glp\_get\_row\_type---retrieve row type}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_get_row_type(glp_prob *lp, int i);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_row_type| returns the type of \verb|i|-th
row, i.e. the type of corresponding auxiliary variable, as follows:
\begin{tabular}{@{}ll}
\verb|GLP_FR| & free (unbounded) variable; \\
\verb|GLP_LO| & variable with lower bound; \\
\verb|GLP_UP| & variable with upper bound; \\
\verb|GLP_DB| & double-bounded variable; \\
\verb|GLP_FX| & fixed variable. \\
\end{tabular}
\subsection{glp\_get\_row\_lb---retrieve row lower bound}
\subsubsection*{Synopsis}
\begin{verbatim}
double glp_get_row_lb(glp_prob *lp, int i);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_row_lb| returns the lower bound of
\verb|i|-th row, i.e. the lower bound of corresponding auxiliary
variable. However, if the row has no lower bound, the routine returns
\verb|-DBL_MAX|.
\subsection{glp\_get\_row\_ub---retrieve row upper bound}
\subsubsection*{Synopsis}
\begin{verbatim}
double glp_get_row_ub(glp_prob *lp, int i);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_row_ub| returns the upper bound of
\verb|i|-th row, i.e. the upper bound of corresponding auxiliary
variable. However, if the row has no upper bound, the routine returns
\verb|+DBL_MAX|.
\subsection{glp\_get\_col\_type---retrieve column type}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_get_col_type(glp_prob *lp, int j);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_col_type| returns the type of \verb|j|-th
column, i.e. the type of corresponding structural variable, as follows:
\begin{tabular}{@{}ll}
\verb|GLP_FR| & free (unbounded) variable; \\
\verb|GLP_LO| & variable with lower bound; \\
\verb|GLP_UP| & variable with upper bound; \\
\verb|GLP_DB| & double-bounded variable; \\
\verb|GLP_FX| & fixed variable. \\
\end{tabular}
\subsection{glp\_get\_col\_lb---retrieve column lower bound}
\subsubsection*{Synopsis}
\begin{verbatim}
double glp_get_col_lb(glp_prob *lp, int j);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_col_lb| returns the lower bound of
\verb|j|-th column, i.e. the lower bound of corresponding structural
variable. However, if the column has no lower bound, the routine returns
\verb|-DBL_MAX|.
\subsection{glp\_get\_col\_ub---retrieve column upper bound}
\subsubsection*{Synopsis}
\begin{verbatim}
double glp_get_col_ub(glp_prob *lp, int j);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_col_ub| returns the upper bound of
\verb|j|-th column, i.e. the upper bound of corresponding structural
variable. However, if the column has no upper bound, the routine returns
\verb|+DBL_MAX|.
\subsection{glp\_get\_obj\_coef---retrieve objective coefficient or\\
constant term}
\subsubsection*{Synopsis}
\begin{verbatim}
double glp_get_obj_coef(glp_prob *lp, int j);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_obj_coef| returns the objective coefficient
at \verb|j|-th structural variable (column).
If the parameter \verb|j| is 0, the routine returns the constant term
(``shift'') of the objective function.
\subsection{glp\_get\_num\_nz---retrieve number of constraint
coefficients}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_get_num_nz(glp_prob *lp);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_num_nz| returns the number of non-zero
elements in the constraint matrix of the specified problem object.
\subsection{glp\_get\_mat\_row---retrieve row of the constraint
matrix}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_get_mat_row(glp_prob *lp, int i, int ind[],
double val[]);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_get_mat_row| scans (non-zero) elements of
\verb|i|-th row of the constraint matrix of the specified problem object
and stores their column indices and numeric values to locations
\verb|ind[1]|, \dots, \verb|ind[len]| and \verb|val[1]|, \dots,
\verb|val[len]|, respectively, where $0\leq{\tt len}\leq n$ is the
number of elements in $i$-th row, $n$ is the number of columns.
The parameter \verb|ind| and/or \verb|val| can be specified as
\verb|NULL|, in which case corresponding information is not stored.
\subsubsection*{Returns}
The routine \verb|glp_get_mat_row| returns the length \verb|len|, i.e.
the number of (non-zero) elements in \verb|i|-th row.
\subsection{glp\_get\_mat\_col---retrieve column of the constraint\\
matrix}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_get_mat_col(glp_prob *lp, int j, int ind[],
double val[]);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_get_mat_col| scans (non-zero) elements of
\verb|j|-th column of the constraint matrix of the specified problem
object and stores their row indices and numeric values to locations
\verb|ind[1]|, \dots, \verb|ind[len]| and \verb|val[1]|, \dots,
\verb|val[len]|, respectively, where $0\leq{\tt len}\leq m$ is the
number of elements in $j$-th column, $m$ is the number of rows.
The parameter \verb|ind| and/or \verb|val| can be specified as
\verb|NULL|, in which case corresponding information is not stored.
\subsubsection*{Returns}
The routine \verb|glp_get_mat_col| returns the length \verb|len|, i.e.
the number of (non-zero) elements in \verb|j|-th column.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newpage
\section{Row and column searching routines}
\subsection{glp\_create\_index---create the name index}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_create_index(glp_prob *lp);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_create_index| creates the name index for the
specified problem object. The name index is an auxiliary data structure,
which is intended to quickly (i.e. for logarithmic time) find rows and
columns by their names.
This routine can be called at any time. If the name index already
exists, the routine does nothing.
\subsection{glp\_find\_row---find row by its name}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_find_row(glp_prob *lp, const char *name);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_find_row| returns the ordinal number of a row,
which is assigned (by the routine \verb|glp_set_row_name|) the specified
symbolic \verb|name|. If no such row exists, the routine returns 0.
\subsection{glp\_find\_col---find column by its name}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_find_col(glp_prob *lp, const char *name);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_find_col| returns the ordinal number of a column,
which is assigned (by the routine \verb|glp_set_col_name|) the specified
symbolic \verb|name|. If no such column exists, the routine returns 0.
\subsection{glp\_delete\_index---delete the name index}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_delete_index(glp_prob *lp);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_delete_index| deletes the name index previously
created by the routine \verb|glp_create_index| and frees the memory
allocated to this auxiliary data structure.
This routine can be called at any time. If the name index does not
exist, the routine does nothing.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newpage
\section{Problem scaling routines}
\subsection{Background}
In GLPK the {\it scaling} means a linear transformation applied to the
constraint matrix to improve its numerical properties.\footnote{In many
cases a proper scaling allows making the constraint matrix to be better
conditioned, i.e. decreasing its condition number, that makes
computations numerically more stable.}
The main equality is the following:
$$\widetilde{A}=RAS,\eqno(2.1)$$
where $A=(a_{ij})$ is the original constraint matrix, $R=(r_{ii})>0$ is
a diagonal matrix used to scale rows (constraints), $S=(s_{jj})>0$ is a
diagonal matrix used to scale columns (variables), $\widetilde{A}$ is
the scaled constraint matrix.
From (2.1) it follows that in the {\it scaled} problem instance each
original constraint coefficient $a_{ij}$ is replaced by corresponding
scaled constraint coefficient:
$$\widetilde{a}_{ij}=r_{ii}a_{ij}s_{jj}.\eqno(2.2)$$
Note that the scaling is performed internally and therefore
transparently to the user. This means that on API level the user always
deal with unscaled data.
Scale factors $r_{ii}$ and $s_{jj}$ can be set or changed at any time
either directly by the application program in a problem specific way
(with the routines \verb|glp_set_rii| and \verb|glp_set_sjj|), or by
some API routines intended for automatic scaling.
\subsection{glp\_set\_rii---set (change) row scale factor}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_set_rii(glp_prob *lp, int i, double rii);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_set_rii| sets (changes) the scale factor $r_{ii}$
for $i$-th row of the specified problem object.
\subsection{glp\_set\_sjj---set (change) column scale factor}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_set_sjj(glp_prob *lp, int j, double sjj);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_set_sjj| sets (changes) the scale factor $s_{jj}$
for $j$-th column of the specified problem object.
\subsection{glp\_get\_rii---retrieve row scale factor}
\subsubsection*{Synopsis}
\begin{verbatim}
double glp_get_rii(glp_prob *lp, int i);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_rii| returns current scale factor $r_{ii}$ for
$i$-th row of the specified problem object.
\subsection{glp\_get\_sjj---retrieve column scale factor}
\subsubsection*{Synopsis}
\begin{verbatim}
double glp_get_sjj(glp_prob *lp, int j);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_sjj| returns current scale factor $s_{jj}$ for
$j$-th column of the specified problem object.
\subsection{glp\_scale\_prob---scale problem data}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_scale_prob(glp_prob *lp, int flags);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_scale_prob| performs automatic scaling of problem
data for the specified problem object.
The parameter \verb|flags| specifies scaling options used by the
routine. The options can be combined with the bitwise OR operator and
may be the following:
\begin{tabular}{@{}ll}
\verb|GLP_SF_GM| & perform geometric mean scaling;\\
\verb|GLP_SF_EQ| & perform equilibration scaling;\\
\verb|GLP_SF_2N| & round scale factors to nearest power of two;\\
\verb|GLP_SF_SKIP| & skip scaling, if the problem is well scaled.\\
\end{tabular}
The parameter \verb|flags| may be specified as \verb|GLP_SF_AUTO|, in
which case the routine chooses the scaling options automatically.
\subsection{glp\_unscale\_prob---unscale problem data}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_unscale_prob(glp_prob *lp);
\end{verbatim}
The routine \verb|glp_unscale_prob| performs unscaling of problem data
for the specified problem object.
``Unscaling'' means replacing the current scaling matrices $R$ and $S$
by unity matrices that cancels the scaling effect.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newpage
\section{LP basis constructing routines}
\subsection{Background}
To start the search the simplex method needs a valid initial basis. In
GLPK the basis is completely defined by a set of {\it statuses} assigned
to {\it all} (auxiliary and structural) variables, where the status may
be one of the following:
\begin{tabular}{@{}ll}
\verb|GLP_BS| & basic variable;\\
\verb|GLP_NL| & non-basic variable having active lower bound;\\
\verb|GLP_NU| & non-basic variable having active upper bound;\\
\verb|GLP_NF| & non-basic free variable;\\
\verb|GLP_NS| & non-basic fixed variable.\\
\end{tabular}
The basis is {\it valid}, if the basis matrix, which is a matrix built
of columns of the augmented constraint matrix $(I\:|-A)$ corresponding
to basic variables, is non-singular. This, in particular, means that
the number of basic variables must be the same as the number of rows in
the problem object. (For more details see Section \ref{lpbasis}, page
\pageref{lpbasis}.)
Any initial basis may be constructed (or restored) with the API
routines \verb|glp_set_row_stat| and \verb|glp_set_col_stat| by
assigning appropriate statuses to auxiliary and structural variables.
Another way to construct an initial basis is to use API routines like
\verb|glp_adv_basis|, which implement so called
{\it crashing}.\footnote{This term is from early linear programming
systems and means a heuristic to construct a valid initial basis.} Note
that on normal exit the simplex solver remains the basis valid, so in
case of reoptimization there is no need to construct an initial basis
from scratch.
\subsection{glp\_set\_row\_stat---set (change) row status}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_set_row_stat(glp_prob *lp, int i, int stat);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_set_row_stat| sets (changes) the current status
of \verb|i|-th row (auxiliary variable) as specified by the parameter
\verb|stat|:
\begin{tabular}{@{}lp{104.2mm}@{}}
\verb|GLP_BS| & make the row basic (make the constraint inactive); \\
\verb|GLP_NL| & make the row non-basic (make the constraint active); \\
\end{tabular}
\newpage
\begin{tabular}{@{}lp{104.2mm}@{}}
\verb|GLP_NU| & make the row non-basic and set it to the upper bound;
if the row is not double-bounded, this status is equivalent to
\verb|GLP_NL| (only in the case of this routine); \\
\verb|GLP_NF| & the same as \verb|GLP_NL| (only in the case of this
routine); \\
\verb|GLP_NS| & the same as \verb|GLP_NL| (only in the case of this
routine). \\
\end{tabular}
\subsection{glp\_set\_col\_stat---set (change) column status}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_set_col_stat(glp_prob *lp, int j, int stat);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_set_col_stat sets| (changes) the current status
of \verb|j|-th column (structural variable) as specified by the
parameter \verb|stat|:
\begin{tabular}{@{}lp{104.2mm}@{}}
\verb|GLP_BS| & make the column basic; \\
\verb|GLP_NL| & make the column non-basic; \\
\verb|GLP_NU| & make the column non-basic and set it to the upper
bound; if the column is not double-bounded, this status is equivalent
to \verb|GLP_NL| (only in the case of this routine); \\
\verb|GLP_NF| & the same as \verb|GLP_NL| (only in the case of this
routine); \\
\verb|GLP_NS| & the same as \verb|GLP_NL| (only in the case of this
routine).
\end{tabular}
\subsection{glp\_std\_basis---construct standard initial LP basis}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_std_basis(glp_prob *lp);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_std_basis| constructs the ``standard'' (trivial)
initial LP basis for the specified problem object.
In the ``standard'' LP basis all auxiliary variables (rows) are basic,
and all structural variables (columns) are non-basic (so the
corresponding basis matrix is unity).
\newpage
\subsection{glp\_adv\_basis---construct advanced initial LP basis}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_adv_basis(glp_prob *lp, int flags);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_adv_basis| constructs an advanced initial LP
basis for the specified problem object.
The parameter \verb|flags| is reserved for use in the future and must
be specified as zero.
In order to construct the advanced initial LP basis the routine does
the following:
1) includes in the basis all non-fixed auxiliary variables;
2) includes in the basis as many non-fixed structural variables as
possible keeping the triangular form of the basis matrix;
3) includes in the basis appropriate (fixed) auxiliary variables to
complete the basis.
As a result the initial LP basis has as few fixed variables as possible
and the corresponding basis matrix is triangular.
\subsection{glp\_cpx\_basis---construct Bixby's initial LP basis}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_cpx_basis(glp_prob *lp);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_cpx_basis| constructs an initial basis for the
specified problem object with the algorithm proposed by
R.~Bixby.\footnote{Robert E. Bixby, ``Implementing the Simplex Method:
The Initial Basis.'' ORSA Journal on Computing, Vol. 4, No. 3, 1992,
pp. 267-84.}
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newpage
\section{Simplex method routines}
The {\it simplex method} is a well known efficient numerical procedure
to solve LP problems.
On each iteration the simplex method transforms the original system of
equaility constraints (1.2) resolving them through different sets of
variables to an equivalent system called {\it the simplex table} (or
sometimes {\it the simplex tableau}), which has the following form:
$$
\begin{array}{r@{\:}c@{\:}r@{\:}c@{\:}r@{\:}c@{\:}r}
z&=&d_1(x_N)_1&+&d_2(x_N)_2&+ \dots +&d_n(x_N)_n \\
(x_B)_1&=&\xi_{11}(x_N)_1& +& \xi_{12}(x_N)_2& + \dots +&
\xi_{1n}(x_N)_n \\
(x_B)_2&=& \xi_{21}(x_N)_1& +& \xi_{22}(x_N)_2& + \dots +&
\xi_{2n}(x_N)_n \\
\multicolumn{7}{c}
{.\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .} \\
(x_B)_m&=&\xi_{m1}(x_N)_1& +& \xi_{m2}(x_N)_2& + \dots +&
\xi_{mn}(x_N)_n \\
\end{array} \eqno (2.3)
$$
where: $(x_B)_1, (x_B)_2, \dots, (x_B)_m$ are basic variables;
$(x_N)_1, (x_N)_2, \dots, (x_N)_n$ are non-basic variables;
$d_1, d_2, \dots, d_n$ are reduced costs;
$\xi_{11}, \xi_{12}, \dots, \xi_{mn}$ are coefficients of the
simplex table. (May note that the original LP problem (1.1)---(1.3) also
has the form of a simplex table, where all equalities are resolved
through auxiliary variables.)
From the linear programming theory it is known that if an optimal
solution of the LP problem (1.1)---(1.3) exists, it can always be
written in the form (2.3), where non-basic variables are set on their
bounds while values of the objective function and basic variables are
determined by the corresponding equalities of the simplex table.
A set of values of all basic and non-basic variables determined by the
simplex table is called {\it basic solution}. If all basic variables are
within their bounds, the basic solution is called {\it (primal)
feasible}, otherwise it is called {\it (primal) infeasible}. A feasible
basic solution, which provides a smallest (in case of minimization) or
a largest (in case of maximization) value of the objective function is
called {\it optimal}. Therefore, for solving LP problem the simplex
method tries to find its optimal basic solution.
Primal feasibility of some basic solution may be stated by simple
checking if all basic variables are within their bounds. Basic solution
is optimal if additionally the following optimality conditions are
satisfied for all non-basic variables:
\begin{center}
\begin{tabular}{lcc}
Status of $(x_N)_j$ & Minimization & Maximization \\
\hline
$(x_N)_j$ is free & $d_j = 0$ & $d_j = 0$ \\
$(x_N)_j$ is on its lower bound & $d_j \geq 0$ & $d_j \leq 0$ \\
$(x_N)_j$ is on its upper bound & $d_j \leq 0$ & $d_j \geq 0$ \\
\end{tabular}
\end{center}
In other words, basic solution is optimal if there is no non-basic
variable, which changing in the feasible direction (i.e. increasing if
it is free or on its lower bound, or decreasing if it is free or on its
upper bound) can improve (i.e. decrease in case of minimization or
increase in case of maximization) the objective function.
If all non-basic variables satisfy to the optimality conditions shown
above (independently on whether basic variables are within their bounds
or not), the basic solution is called {\it dual feasible}, otherwise it
is called {\it dual infeasible}.
It may happen that some LP problem has no primal feasible solution due
to incorrect formulation---this means that its constraints conflict
with each other. It also may happen that some LP problem has unbounded
solution again due to incorrect formulation---this means that some
non-basic variable can improve the objective function, i.e. the
optimality conditions are violated, and at the same time this variable
can infinitely change in the feasible direction meeting no resistance
from basic variables. (May note that in the latter case the LP problem
has no dual feasible solution.)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\subsection{glp\_simplex---solve LP problem with the primal or dual
simplex method}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_simplex(glp_prob *lp, const glp_smcp *parm);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_simplex| is a driver to the LP solver based on
the simplex method. This routine retrieves problem data from the
specified problem object, calls the solver to solve the problem
instance, and stores results of computations back into the problem
object.
The simplex solver has a set of control parameters. Values of the
control parameters can be passed in the structure \verb|glp_smcp|,
which the parameter \verb|parm| points to. For detailed description of
this structure see paragraph ``Control parameters'' below.
Before specifying some control parameters the application program
should initialize the structure \verb|glp_smcp| by default values of
all control parameters using the routine \verb|glp_init_smcp| (see the
next subsection). This is needed for backward compatibility, because in
the future there may appear new members in the structure
\verb|glp_smcp|.
The parameter \verb|parm| can be specified as \verb|NULL|, in which
case the solver uses default settings.
\subsubsection*{Returns}
\def\arraystretch{1}
\begin{tabular}{@{}p{25mm}p{97.3mm}@{}}
0 & The LP problem instance has been successfully solved. (This code
does {\it not} necessarily mean that the solver has found optimal
solution. It only means that the solution process was successful.) \\
\verb|GLP_EBADB| & Unable to start the search, because the initial basis
specified in the problem object is invalid---the number of basic
(auxiliary and structural) variables is not the same as the number of
rows in the problem object.\\
\verb|GLP_ESING| & Unable to start the search, because the basis matrix
corresponding to the initial basis is singular within the working
precision.\\
\verb|GLP_ECOND| & Unable to start the search, because the basis matrix
corresponding to the initial basis is ill-conditioned, i.e. its
condition number is too large.\\
\verb|GLP_EBOUND| & Unable to start the search, because some
double-bounded (auxiliary or structural) variables have incorrect
bounds.\\
\verb|GLP_EFAIL| & The search was prematurely terminated due to the
solver failure.\\
\verb|GLP_EOBJLL| & The search was prematurely terminated, because the
objective function being maximized has reached its lower limit and
continues decreasing (the dual simplex only).\\
\verb|GLP_EOBJUL| & The search was prematurely terminated, because the
objective function being minimized has reached its upper limit and
continues increasing (the dual simplex only).\\
\verb|GLP_EITLIM| & The search was prematurely terminated, because the
simplex iteration limit has been exceeded.\\
\verb|GLP_ETMLIM| & The search was prematurely terminated, because the
time limit has been exceeded.\\
\verb|GLP_ENOPFS| & The LP problem instance has no primal feasible
solution (only if the LP presolver is used).\\
\verb|GLP_ENODFS| & The LP problem instance has no dual feasible
solution (only if the LP presolver is used).\\
\end{tabular}
\subsubsection*{Built-in LP presolver}
The simplex solver has {\it built-in LP presolver}. It is a subprogram
that transforms the original LP problem specified in the problem object
to an equivalent LP problem, which may be easier for solving with the
simplex method than the original one. This is attained mainly due to
reducing the problem size and improving its numeric properties (for
example, by removing some inactive constraints or by fixing some
non-basic variables). Once the transformed LP problem has been solved,
the presolver transforms its basic solution back to the corresponding
basic solution of the original problem.
Presolving is an optional feature of the routine \verb|glp_simplex|,
and by default it is disabled. In order to enable the LP presolver the
control parameter \verb|presolve| should be set to \verb|GLP_ON| (see
paragraph ``Control parameters'' below). Presolving may be used when
the problem instance is solved for the first time. However, on
performing re-optimization the presolver should be disabled.
The presolving procedure is transparent to the API user in the sense
that all necessary processing is performed internally, and a basic
solution of the original problem recovered by the presolver is the same
as if it were computed directly, i.e. without presolving.
Note that the presolver is able to recover only optimal solutions. If
a computed solution is infeasible or non-optimal, the corresponding
solution of the original problem cannot be recovered and therefore
remains undefined. If you need to know a basic solution even if it is
infeasible or non-optimal, the presolver should be disabled.
\subsubsection*{Terminal output}
Solving large problem instances may take a long time, so the solver
reports some information about the current basic solution, which is sent
to the terminal. This information has the following format:
\begin{verbatim}
nnn: obj = xxx infeas = yyy (ddd)
\end{verbatim}
\noindent
where: `\verb|nnn|' is the iteration number, `\verb|xxx|' is the
current value of the objective function (it is is unscaled and has
correct sign); `\verb|yyy|' is the current sum of primal or dual
infeasibilities (it is scaled and therefore may be used only for visual
estimating), `\verb|ddd|' is the current number of fixed basic
variables.
The symbol preceding the iteration number indicates which phase of the
simplex method is in effect:
{\it Blank} means that the solver is searching for primal feasible
solution using the primal simplex or for dual feasible solution using
the dual simplex;
{\it Asterisk} (\verb|*|) means that the solver is searching for
optimal solution using the primal simplex;
{\it Vertical dash} (\verb/|/) means that the solver is searching for
optimal solution using the dual simplex.
\subsubsection*{Control parameters}
This paragraph describes all control parameters currently used in the
simplex solver. Symbolic names of control parameters are names of
corresponding members in the structure \verb|glp_smcp|.
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt int msg\_lev} (default: {\tt GLP\_MSG\_ALL})}
\\
&Message level for terminal output:\\
&\verb|GLP_MSG_OFF|---no output;\\
&\verb|GLP_MSG_ERR|---error and warning messages only;\\
&\verb|GLP_MSG_ON |---normal output;\\
&\verb|GLP_MSG_ALL|---full output (including informational messages).
\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt int meth} (default: {\tt GLP\_PRIMAL})}
\\
&Simplex method option:\\
&\verb|GLP_PRIMAL|---use two-phase primal simplex;\\
&\verb|GLP_DUAL |---use two-phase dual simplex;\\
&\verb|GLP_DUALP |---use two-phase dual simplex, and if it fails,
switch to the\\
&\verb| |$\:$ primal simplex.\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt int pricing} (default: {\tt GLP\_PT\_PSE})}
\\
&Pricing technique:\\
&\verb|GLP_PT_STD|---standard (textbook);\\
&\verb|GLP_PT_PSE|---projected steepest edge.\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt int r\_test} (default: {\tt GLP\_RT\_HAR})}
\\
&Ratio test technique:\\
&\verb|GLP_RT_STD|---standard (textbook);\\
&\verb|GLP_RT_HAR|---Harris' two-pass ratio test.\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt double tol\_bnd} (default: {\tt 1e-7})}
\\
&Tolerance used to check if the basic solution is primal feasible.
(Do not change this parameter without detailed understanding its
purpose.)\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt double tol\_dj} (default: {\tt 1e-7})}
\\
&Tolerance used to check if the basic solution is dual feasible.
(Do not change this parameter without detailed understanding its
purpose.)\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt double tol\_piv} (default: {\tt 1e-10})}
\\
&Tolerance used to choose eligble pivotal elements of the simplex table.
(Do not change this parameter without detailed understanding its
purpose.)\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt double obj\_ll} (default: {\tt -DBL\_MAX})}
\\
&Lower limit of the objective function. If the objective function
reaches this limit and continues decreasing, the solver terminates the
search. (Used in the dual simplex only.)\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt double obj\_ul} (default: {\tt +DBL\_MAX})}
\\
&Upper limit of the objective function. If the objective function
reaches this limit and continues increasing, the solver terminates the
search. (Used in the dual simplex only.)\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt int it\_lim} (default: {\tt INT\_MAX})}
\\
&Simplex iteration limit.\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt int tm\_lim} (default: {\tt INT\_MAX})}
\\
&Searching time limit, in milliseconds.\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt int out\_frq} (default: {\tt 500})}
\\
&Output frequency, in iterations. This parameter specifies how
frequently the solver sends information about the solution process to
the terminal.\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt int out\_dly} (default: {\tt 0})}
\\
&Output delay, in milliseconds. This parameter specifies how long the
solver should delay sending information about the solution process to
the terminal.\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt int presolve} (default: {\tt GLP\_OFF})}
\\
&LP presolver option:\\
&\verb|GLP_ON |---enable using the LP presolver;\\
&\verb|GLP_OFF|---disable using the LP presolver.\\
\end{tabular}
\subsubsection*{Example 1}
The following main program reads LP problem instance in fixed MPS
format from file \verb|25fv47.mps|,\footnote{This instance in fixed MPS
format can be found in the Netlib LP collection; see
{\tt ftp://ftp.netlib.org/lp/data/}.} constructs an advanced initial
basis, solves the instance with the primal simplex method (by default),
and writes the solution to file \verb|25fv47.txt|.
\newpage
\begin{footnotesize}
\begin{verbatim}
/* spxsamp1.c */
#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>
int main(void)
{ glp_prob *P;
P = glp_create_prob();
glp_read_mps(P, GLP_MPS_DECK, NULL, "25fv47.mps");
glp_adv_basis(P, 0);
glp_simplex(P, NULL);
glp_print_sol(P, "25fv47.txt");
glp_delete_prob(P);
return 0;
}
/* eof */
\end{verbatim}
\end{footnotesize}
\noindent
Below here is shown the terminal output from this example program.
\begin{footnotesize}
\begin{verbatim}
Reading problem data from `25fv47.mps'...
Problem: 25FV47
Objective: R0000
822 rows, 1571 columns, 11127 non-zeros
6919 records were read
Crashing...
Size of triangular part = 799
0: obj = 1.627307307e+04 infeas = 5.194e+04 (23)
200: obj = 1.474901610e+04 infeas = 1.233e+04 (19)
400: obj = 1.343909995e+04 infeas = 3.648e+03 (13)
600: obj = 1.756052217e+04 infeas = 4.179e+02 (7)
* 775: obj = 1.789251591e+04 infeas = 4.982e-14 (1)
* 800: obj = 1.663354510e+04 infeas = 2.857e-14 (1)
* 1000: obj = 1.024935068e+04 infeas = 1.958e-12 (1)
* 1200: obj = 7.860174791e+03 infeas = 2.810e-29 (1)
* 1400: obj = 6.642378184e+03 infeas = 2.036e-16 (1)
* 1600: obj = 6.037014568e+03 infeas = 0.000e+00 (1)
* 1800: obj = 5.662171307e+03 infeas = 6.447e-15 (1)
* 2000: obj = 5.528146165e+03 infeas = 9.764e-13 (1)
* 2125: obj = 5.501845888e+03 infeas = 0.000e+00 (1)
OPTIMAL SOLUTION FOUND
Writing basic solution to `25fv47.txt'...
\end{verbatim}
\end{footnotesize}
\newpage
\subsubsection*{Example 2}
The following main program solves the same LP problem instance as in
Example 1 above, however, it uses the dual simplex method, which starts
from the standard initial basis.
\begin{footnotesize}
\begin{verbatim}
/* spxsamp2.c */
#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>
int main(void)
{ glp_prob *P;
glp_smcp parm;
P = glp_create_prob();
glp_read_mps(P, GLP_MPS_DECK, NULL, "25fv47.mps");
glp_init_smcp(&parm);
parm.meth = GLP_DUAL;
glp_simplex(P, &parm);
glp_print_sol(P, "25fv47.txt");
glp_delete_prob(P);
return 0;
}
/* eof */
\end{verbatim}
\end{footnotesize}
\noindent
Below here is shown the terminal output from this example program.
\begin{footnotesize}
\begin{verbatim}
Reading problem data from `25fv47.mps'...
Problem: 25FV47
Objective: R0000
822 rows, 1571 columns, 11127 non-zeros
6919 records were read
0: infeas = 1.223e+03 (516)
200: infeas = 7.000e+00 (471)
240: infeas = 1.106e-14 (461)
| 400: obj = -5.394267152e+03 infeas = 5.571e-16 (391)
| 600: obj = -4.586395752e+03 infeas = 1.389e-15 (340)
| 800: obj = -4.158268146e+03 infeas = 1.640e-15 (264)
| 1000: obj = -3.725320045e+03 infeas = 5.181e-15 (245)
| 1200: obj = -3.104802163e+03 infeas = 1.019e-14 (210)
| 1400: obj = -2.584190499e+03 infeas = 8.865e-15 (178)
| 1600: obj = -2.073852927e+03 infeas = 7.867e-15 (142)
| 1800: obj = -1.164037407e+03 infeas = 8.792e-15 (109)
| 2000: obj = -4.370590250e+02 infeas = 2.591e-14 (85)
| 2200: obj = 1.068240144e+03 infeas = 1.025e-13 (70)
| 2400: obj = 1.607481126e+03 infeas = 3.272e-14 (67)
| 2600: obj = 3.038230551e+03 infeas = 4.850e-14 (52)
| 2800: obj = 4.316238187e+03 infeas = 2.622e-14 (36)
| 3000: obj = 5.443842629e+03 infeas = 3.976e-15 (11)
| 3060: obj = 5.501845888e+03 infeas = 8.806e-15 (2)
OPTIMAL SOLUTION FOUND
Writing basic solution to `25fv47.txt'...
\end{verbatim}
\end{footnotesize}
\subsection{glp\_exact---solve LP problem in exact arithmetic}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_exact(glp_prob *lp, const glp_smcp *parm);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_exact| is a tentative implementation of the
primal two-phase simplex method based on exact (rational) arithmetic.
It is similar to the routine \verb|glp_simplex|, however, for all
internal computations it uses arithmetic of rational numbers, which is
exact in mathematical sense, i.e. free of round-off errors unlike
floating-point arithmetic.
Note that the routine \verb|glp_exact| uses only two control parameters
passed in the structure \verb|glp_smcp|, namely, \verb|it_lim| and
\verb|tm_lim|.
\subsubsection*{Returns}
\def\arraystretch{1}
\begin{tabular}{@{}p{25mm}p{97.3mm}@{}}
0 & The LP problem instance has been successfully solved. (This code
does {\it not} necessarily mean that the solver has found optimal
solution. It only means that the solution process was successful.) \\
\verb|GLP_EBADB| & Unable to start the search, because the initial basis
specified in the problem object is invalid---the number of basic
(auxiliary and structural) variables is not the same as the number of
rows in the problem object.\\
\verb|GLP_ESING| & Unable to start the search, because the basis matrix
corresponding to the initial basis is exactly singular.\\
\verb|GLP_EBOUND| & Unable to start the search, because some
double-bounded (auxiliary or structural) variables have incorrect
bounds.\\
\verb|GLP_EFAIL| & The problem instance has no rows/columns.\\
\verb|GLP_EITLIM| & The search was prematurely terminated, because the
simplex iteration limit has been exceeded.\\
\verb|GLP_ETMLIM| & The search was prematurely terminated, because the
time limit has been exceeded.\\
\end{tabular}
\subsubsection*{Comments}
Computations in exact arithmetic are very time consuming, so solving
LP problem with the routine \verb|glp_exact| from the very beginning is
not a good idea. It is much better at first to find an optimal basis
with the routine \verb|glp_simplex| and only then to call
\verb|glp_exact|, in which case only a few simplex iterations need to
be performed in exact arithmetic.
\subsection{glp\_init\_smcp---initialize simplex solver control
parameters}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_init_smcp(glp_smcp *parm);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_init_smcp| initializes control parameters, which
are used by the simplex solver, with default values.
Default values of the control parameters are stored in a \verb|glp_smcp|
structure, which the parameter \verb|parm| points to.
\subsection{glp\_get\_status---determine generic status of basic
solution}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_get_status(glp_prob *lp);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_status| reports the generic status of the
current basic solution for the specified problem object as follows:
\begin{tabular}{@{}ll}
\verb|GLP_OPT| & solution is optimal; \\
\verb|GLP_FEAS| & solution is feasible; \\
\verb|GLP_INFEAS| & solution is infeasible; \\
\verb|GLP_NOFEAS| & problem has no feasible solution; \\
\verb|GLP_UNBND| & problem has unbounded solution; \\
\verb|GLP_UNDEF| & solution is undefined. \\
\end{tabular}
More detailed information about the status of basic solution can be
retrieved with the routines \verb|glp_get_prim_stat| and
\verb|glp_get_dual_stat|.
\newpage
\subsection{glp\_get\_prim\_stat---retrieve status of primal basic
solution}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_get_prim_stat(glp_prob *lp);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_prim_stat| reports the status of the primal
basic solution for the specified problem object as follows:
\begin{tabular}{@{}ll}
\verb|GLP_UNDEF| & primal solution is undefined; \\
\verb|GLP_FEAS| & primal solution is feasible; \\
\verb|GLP_INFEAS| & primal solution is infeasible; \\
\verb|GLP_NOFEAS| & no primal feasible solution exists. \\
\end{tabular}
\subsection{glp\_get\_dual\_stat---retrieve status of dual basic
solution}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_get_dual_stat(glp_prob *lp);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_dual_stat| reports the status of the dual
basic solution for the specified problem object as follows:
\begin{tabular}{@{}ll}
\verb|GLP_UNDEF| & dual solution is undefined; \\
\verb|GLP_FEAS| & dual solution is feasible; \\
\verb|GLP_INFEAS| & dual solution is infeasible; \\
\verb|GLP_NOFEAS| & no dual feasible solution exists. \\
\end{tabular}
\subsection{glp\_get\_obj\_val---retrieve objective value}
\subsubsection*{Synopsis}
\begin{verbatim}
double glp_get_obj_val(glp_prob *lp);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_obj_val| returns current value of the
objective function.
\subsection{glp\_get\_row\_stat---retrieve row status}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_get_row_stat(glp_prob *lp, int i);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_row_stat| returns current status assigned to
the auxiliary variable associated with \verb|i|-th row as follows:
\begin{tabular}{@{}ll}
\verb|GLP_BS| & basic variable; \\
\verb|GLP_NL| & non-basic variable on its lower bound; \\
\verb|GLP_NU| & non-basic variable on its upper bound; \\
\verb|GLP_NF| & non-basic free (unbounded) variable; \\
\verb|GLP_NS| & non-basic fixed variable. \\
\end{tabular}
\subsection{glp\_get\_row\_prim---retrieve row primal value}
\subsubsection*{Synopsis}
\begin{verbatim}
double glp_get_row_prim(glp_prob *lp, int i);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_row_prim| returns primal value of the
auxiliary variable associated with \verb|i|-th row.
\subsection{glp\_get\_row\_dual---retrieve row dual value}
\subsubsection*{Synopsis}
\begin{verbatim}
double glp_get_row_dual(glp_prob *lp, int i);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_row_dual| returns dual value (i.e. reduced
cost) of the auxiliary variable associated with \verb|i|-th row.
\newpage
\subsection{glp\_get\_col\_stat---retrieve column status}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_get_col_stat(glp_prob *lp, int j);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_col_stat| returns current status assigned to
the structural variable associated with \verb|j|-th column as follows:
\begin{tabular}{@{}ll}
\verb|GLP_BS| & basic variable; \\
\verb|GLP_NL| & non-basic variable on its lower bound; \\
\verb|GLP_NU| & non-basic variable on its upper bound; \\
\verb|GLP_NF| & non-basic free (unbounded) variable; \\
\verb|GLP_NS| & non-basic fixed variable. \\
\end{tabular}
\subsection{glp\_get\_col\_prim---retrieve column primal value}
\subsubsection*{Synopsis}
\begin{verbatim}
double glp_get_col_prim(glp_prob *lp, int j);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_col_prim| returns primal value of the
structural variable associated with \verb|j|-th column.
\subsection{glp\_get\_col\_dual---retrieve column dual value}
\subsubsection*{Synopsis}
\begin{verbatim}
double glp_get_col_dual(glp_prob *lp, int j);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_col_dual| returns dual value (i.e. reduced
cost) of the structural variable associated with \verb|j|-th column.
\newpage
\subsection{glp\_get\_unbnd\_ray---determine variable causing\\
unboundedness}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_get_unbnd_ray(glp_prob *lp);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_unbnd_ray| returns the number $k$ of
a variable, which causes primal or dual unboundedness.
If $1\leq k\leq m$, it is $k$-th auxiliary variable, and if
$m+1\leq k\leq m+n$, it is $(k-m)$-th structural variable, where $m$ is
the number of rows, $n$ is the number of columns in the problem object.
If such variable is not defined, the routine returns 0.
\subsubsection*{Comments}
If it is not exactly known which version of the simplex solver
detected unboundedness, i.e. whether the unboundedness is primal or
dual, it is sufficient to check the status of the variable
with the routine \verb|glp_get_row_stat| or \verb|glp_get_col_stat|.
If the variable is non-basic, the unboundedness is primal, otherwise,
if the variable is basic, the unboundedness is dual (the latter case
means that the problem has no primal feasible dolution).
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newpage
\section{Interior-point method routines}
{\it Interior-point methods} (also known as {\it barrier methods}) are
more modern and powerful numerical methods for large-scale linear
programming. Such methods are especially efficient for very sparse LP
problems and allow solving such problems much faster than the simplex
method.
In brief, the GLPK interior-point solver works as follows.
At first, the solver transforms the original LP to a {\it working} LP
in the standard format:
\medskip
\noindent
\hspace{.5in} minimize
$$z = c_1x_{m+1} + c_2x_{m+2} + \dots + c_nx_{m+n} + c_0 \eqno (2.4)$$
\hspace{.5in} subject to linear constraints
$$
\begin{array}{r@{\:}c@{\:}r@{\:}c@{\:}r@{\:}c@{\:}l}
a_{11}x_{m+1}&+&a_{12}x_{m+2}&+ \dots +&a_{1n}x_{m+n}&=&b_1 \\
a_{21}x_{m+1}&+&a_{22}x_{m+2}&+ \dots +&a_{2n}x_{m+n}&=&b_2 \\
\multicolumn{7}{c}
{.\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .\ \ .} \\
a_{m1}x_{m+1}&+&a_{m2}x_{m+2}&+ \dots +&a_{mn}x_{m+n}&=&b_m \\
\end{array} \eqno (2.5)
$$
\hspace{.5in} and non-negative variables
$$x_1\geq 0,\ \ x_2\geq 0,\ \ \dots,\ \ x_n\geq 0 \eqno(2.6)$$
where: $z$ is the objective function; $x_1$, \dots, $x_n$ are variables;
$c_1$, \dots, $c_n$ are objective coefficients; $c_0$ is a constant term
of the objective function;\linebreak $a_{11}$, \dots, $a_{mn}$ are
constraint coefficients; $b_1$, \dots, $b_m$ are right-hand sides.
Using vector and matrix notations the working LP (2.4)---(2.6) can be
written as follows:
$$z=c^Tx+c_0\ \rightarrow\ \min,\eqno(2.7)$$
$$Ax=b,\eqno(2.8)$$
$$x\geq 0,\eqno(2.9)$$
where: $x=(x_j)$ is $n$-vector of variables, $c=(c_j)$ is $n$-vector of
objective coefficients, $A=(a_{ij})$ is $m\times n$-matrix of
constraint coefficients, and $b=(b_i)$ is $m$-vector of right-hand
sides.
Karush--Kuhn--Tucker optimality conditions for LP (2.7)---(2.9) are the
following:
\newpage
$$Ax=b,\eqno(2.10)$$
$$A^T\pi+\lambda=c,\eqno(2.11)$$
$$\lambda^Tx=0,\eqno(2.12)$$
$$x\geq 0,\ \ \lambda\geq 0,\eqno(2.13)$$
where: $\pi$ is $m$-vector of Lagrange multipliers (dual variables) for
equality constraints (2.8), $\lambda$ is $n$-vector of Lagrange
multipliers (dual variables) for non-negativity constraints (2.9),
(2.10) is the primal feasibility condition, (2.11) is the dual
feasibility condition, (2.12) is the primal-dual complementarity
condition, and (2.13) is the non-negativity conditions.
The main idea of the primal-dual interior-point method is based on
finding a point in the primal-dual space (i.e. in the space of all
primal and dual variables $x$, $\pi$, and $\lambda$), which satisfies
to all optimality conditions (2.10)---(2.13). Obviously, $x$-component
of such point then provides an optimal solution to the working LP
(2.7)---(2.9).
To find the optimal point $(x^*,\pi^*,\lambda^*)$ the interior-point
method attempts to solve the system of equations (2.10)---(2.12), which
is closed in the sense that the number of variables $x_j$, $\pi_i$, and
$\lambda_j$ and the number equations are the same and equal to $m+2n$.
Due to condition (2.12) this system of equations is non-linear, so it
can be solved with a version of {\it Newton's method} provided with
additional rules to keep the current point within the positive orthant
as required by the non-negativity conditions (2.13).
Finally, once the optimal point $(x^*,\pi^*,\lambda^*)$ has been found,
the solver performs inverse transformations to recover corresponding
solution to the original LP passed to the solver from the application
program.
\subsection{glp\_interior---solve LP problem with the interior-point
method}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_interior(glp_prob *P, const glp_iptcp *parm);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_interior| is a driver to the LP solver based on
the primal-dual interior-point method. This routine retrieves problem
data from the specified problem object, calls the solver to solve the
problem instance, and stores results of computations back into the
problem object.
The interior-point solver has a set of control parameters. Values of
the control parameters can be passed in the structure \verb|glp_iptcp|,
which the parameter \verb|parm| points to. For detailed description of
this structure see paragraph ``Control parameters'' below. Before
specifying some control parameters the application program should
initialize the structure \verb|glp_iptcp| by default values of all
control parameters using the routine \verb|glp_init_iptcp| (see the
next subsection). This is needed for backward compatibility, because in
the future there may appear new members in the structure
\verb|glp_iptcp|.
The parameter \verb|parm| can be specified as \verb|NULL|, in which
case the solver uses default settings.
\subsubsection*{Returns}
\def\arraystretch{1}
\begin{tabular}{@{}p{25mm}p{97.3mm}@{}}
0 & The LP problem instance has been successfully solved. (This code
does {\it not} necessarily mean that the solver has found optimal
solution. It only means that the solution process was successful.) \\
\verb|GLP_EFAIL| & The problem has no rows/columns.\\
\verb|GLP_ENOCVG| & Very slow convergence or divergence.\\
\verb|GLP_EITLIM| & Iteration limit exceeded.\\
\verb|GLP_EINSTAB| & Numerical instability on solving Newtonian
system.\\
\end{tabular}
\subsubsection*{Comments}
The routine \verb|glp_interior| implements an easy version of
the primal-dual interior-point method based on Mehrotra's
technique.\footnote{S. Mehrotra. On the implementation of a primal-dual
interior point method. SIAM J. on Optim., 2(4), pp. 575-601, 1992.}
Note that currently the GLPK interior-point solver does not include
many important features, in particular:
$\bullet$ it is not able to process dense columns. Thus, if the
constraint matrix of the LP problem has dense columns, the solving
process may be inefficient;
$\bullet$ it has no features against numerical instability. For some
LP problems premature termination may happen if the matrix $ADA^T$
becomes singular or ill-conditioned;
$\bullet$ it is not able to identify the optimal basis, which
corresponds to the interior-point solution found.
\newpage
\subsubsection*{Terminal output}
Solving large LP problems may take a long time, so the solver reports
some information about every interior-point iteration,\footnote{Unlike
the simplex method the interior point method usually needs 30---50
iterations (independently on the problem size) in order to find an
optimal solution.} which is sent to the terminal. This information has
the following format:
\begin{verbatim}
nnn: obj = fff; rpi = ppp; rdi = ddd; gap = ggg
\end{verbatim}
\noindent where: \verb|nnn| is iteration number, \verb|fff| is the
current value of the objective function (in the case of maximization it
has wrong sign), \verb|ppp| is the current relative primal
infeasibility (cf. (2.10)):
$$\frac{\|Ax^{(k)}-b\|}{1+\|b\|},\eqno(2.14)$$
\verb|ddd| is the current relative dual infeasibility (cf. (2.11)):
$$\frac{\|A^T\pi^{(k)}+\lambda^{(k)}-c\|}{1+\|c\|},\eqno(2.15)$$
\verb|ggg| is the current primal-dual gap (cf. (2.12)):
$$\frac{|c^Tx^{(k)}-b^T\pi^{(k)}|}{1+|c^Tx^{(k)}|},\eqno(2.16)$$
and $[x^{(k)},\pi^{(k)},\lambda^{(k)}]$ is the current point on $k$-th
iteration, $k=0,1,2,\dots$\ . Note that all solution components are
internally scaled, so information sent to the terminal is suitable only
for visual inspection.
\subsubsection*{Control parameters}
This paragraph describes all control parameters currently used in the
interior-point solver. Symbolic names of control parameters are names of
corresponding members in the structure \verb|glp_iptcp|.
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt int msg\_lev} (default: {\tt GLP\_MSG\_ALL})}
\\
&Message level for terminal output:\\
&\verb|GLP_MSG_OFF|---no output;\\
&\verb|GLP_MSG_ERR|---error and warning messages only;\\
&\verb|GLP_MSG_ON |---normal output;\\
&\verb|GLP_MSG_ALL|---full output (including informational messages).
\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt int ord\_alg} (default: {\tt GLP\_ORD\_AMD})}
\\
&Ordering algorithm used prior to Cholesky factorization:\\
&\verb|GLP_ORD_NONE |---use natural (original) ordering;\\
&\verb|GLP_ORD_QMD |---quotient minimum degree (QMD);\\
&\verb|GLP_ORD_AMD |---approximate minimum degree (AMD);\\
&\verb|GLP_ORD_SYMAMD|---approximate minimum degree (SYMAMD).\\
\end{tabular}
\subsubsection*{Example}
The following main program reads LP problem instance in fixed MPS
format from file \verb|25fv47.mps|,\footnote{This instance in fixed MPS
format can be found in the Netlib LP collection; see
{\tt ftp://ftp.netlib.org/lp/data/}.} solves it with the interior-point
solver, and writes the solution to file \verb|25fv47.txt|.
\begin{footnotesize}
\begin{verbatim}
/* iptsamp.c */
#include <stdio.h>
#include <stdlib.h>
#include <glpk.h>
int main(void)
{ glp_prob *P;
P = glp_create_prob();
glp_read_mps(P, GLP_MPS_DECK, NULL, "25fv47.mps");
glp_interior(P, NULL);
glp_print_ipt(P, "25fv47.txt");
glp_delete_prob(P);
return 0;
}
/* eof */
\end{verbatim}
\end{footnotesize}
\noindent
Below here is shown the terminal output from this example program.
\begin{footnotesize}
\begin{verbatim}
Reading problem data from `25fv47.mps'...
Problem: 25FV47
Objective: R0000
822 rows, 1571 columns, 11127 non-zeros
6919 records were read
Original LP has 822 row(s), 1571 column(s), and 11127 non-zero(s)
Working LP has 821 row(s), 1876 column(s), and 10705 non-zero(s)
Matrix A has 10705 non-zeros
Matrix S = A*A' has 11895 non-zeros (upper triangle)
Minimal degree ordering...
Computing Cholesky factorization S = L'*L...
Matrix L has 35411 non-zeros
Guessing initial point...
Optimization begins...
0: obj = 1.823377629e+05; rpi = 1.3e+01; rdi = 1.4e+01; gap = 9.3e-01
1: obj = 9.260045192e+04; rpi = 5.3e+00; rdi = 5.6e+00; gap = 6.8e+00
2: obj = 3.596999742e+04; rpi = 1.5e+00; rdi = 1.2e+00; gap = 1.8e+01
3: obj = 1.989627568e+04; rpi = 4.7e-01; rdi = 3.0e-01; gap = 1.9e+01
4: obj = 1.430215557e+04; rpi = 1.1e-01; rdi = 8.6e-02; gap = 1.4e+01
5: obj = 1.155716505e+04; rpi = 2.3e-02; rdi = 2.4e-02; gap = 6.8e+00
6: obj = 9.660273208e+03; rpi = 6.7e-03; rdi = 4.6e-03; gap = 3.9e+00
7: obj = 8.694348283e+03; rpi = 3.7e-03; rdi = 1.7e-03; gap = 2.0e+00
8: obj = 8.019543639e+03; rpi = 2.4e-03; rdi = 3.9e-04; gap = 1.0e+00
9: obj = 7.122676293e+03; rpi = 1.2e-03; rdi = 1.5e-04; gap = 6.6e-01
10: obj = 6.514534518e+03; rpi = 6.1e-04; rdi = 4.3e-05; gap = 4.1e-01
11: obj = 6.361572203e+03; rpi = 4.8e-04; rdi = 2.2e-05; gap = 3.0e-01
12: obj = 6.203355508e+03; rpi = 3.2e-04; rdi = 1.7e-05; gap = 2.6e-01
13: obj = 6.032943411e+03; rpi = 2.0e-04; rdi = 9.3e-06; gap = 2.1e-01
14: obj = 5.796553021e+03; rpi = 9.8e-05; rdi = 3.2e-06; gap = 1.0e-01
15: obj = 5.667032431e+03; rpi = 4.4e-05; rdi = 1.1e-06; gap = 5.6e-02
16: obj = 5.613911867e+03; rpi = 2.5e-05; rdi = 4.1e-07; gap = 3.5e-02
17: obj = 5.560572626e+03; rpi = 9.9e-06; rdi = 2.3e-07; gap = 2.1e-02
18: obj = 5.537276001e+03; rpi = 5.5e-06; rdi = 8.4e-08; gap = 1.1e-02
19: obj = 5.522746942e+03; rpi = 2.2e-06; rdi = 4.0e-08; gap = 6.7e-03
20: obj = 5.509956679e+03; rpi = 7.5e-07; rdi = 1.8e-08; gap = 2.9e-03
21: obj = 5.504571733e+03; rpi = 1.6e-07; rdi = 5.8e-09; gap = 1.1e-03
22: obj = 5.502576367e+03; rpi = 3.4e-08; rdi = 1.0e-09; gap = 2.5e-04
23: obj = 5.502057119e+03; rpi = 8.1e-09; rdi = 3.0e-10; gap = 7.7e-05
24: obj = 5.501885996e+03; rpi = 9.4e-10; rdi = 1.2e-10; gap = 2.4e-05
25: obj = 5.501852464e+03; rpi = 1.4e-10; rdi = 1.2e-11; gap = 3.0e-06
26: obj = 5.501846549e+03; rpi = 1.4e-11; rdi = 1.2e-12; gap = 3.0e-07
27: obj = 5.501845954e+03; rpi = 1.4e-12; rdi = 1.2e-13; gap = 3.0e-08
28: obj = 5.501845895e+03; rpi = 1.5e-13; rdi = 1.2e-14; gap = 3.0e-09
OPTIMAL SOLUTION FOUND
Writing interior-point solution to `25fv47.txt'...
\end{verbatim}
\end{footnotesize}
\subsection{glp\_init\_iptcp---initialize interior-point solver control
parameters}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_init_iptcp(glp_iptcp *parm);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_init_iptcp| initializes control parameters, which
are used by the interior-point solver, with default values.
Default values of the control parameters are stored in the structure
\verb|glp_iptcp|, which the parameter \verb|parm| points to.
\subsection{glp\_ipt\_status---determine solution status}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_ipt_status(glp_prob *lp);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_ipt_status| reports the status of a solution
found by the interior-point solver as follows:
\begin{tabular}{@{}p{25mm}p{91.3mm}@{}}
\verb|GLP_UNDEF| & interior-point solution is undefined. \\
\verb|GLP_OPT| & interior-point solution is optimal. \\
\verb|GLP_INFEAS|& interior-point solution is infeasible. \\
\verb|GLP_NOFEAS|& no feasible primal-dual solution exists.\\
\end{tabular}
\subsection{glp\_ipt\_obj\_val---retrieve objective value}
\subsubsection*{Synopsis}
\begin{verbatim}
double glp_ipt_obj_val(glp_prob *lp);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_ipt_obj_val| returns value of the objective
function for interior-point solution.
\subsection{glp\_ipt\_row\_prim---retrieve row primal value}
\subsubsection*{Synopsis}
\begin{verbatim}
double glp_ipt_row_prim(glp_prob *lp, int i);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_ipt_row_prim| returns primal value of the
auxiliary variable associated with \verb|i|-th row.
\newpage
\subsection{glp\_ipt\_row\_dual---retrieve row dual value}
\subsubsection*{Synopsis}
\begin{verbatim}
double glp_ipt_row_dual(glp_prob *lp, int i);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_ipt_row_dual| returns dual value (i.e. reduced
cost) of the auxiliary variable associated with \verb|i|-th row.
\subsection{glp\_ipt\_col\_prim---retrieve column primal value}
\subsubsection*{Synopsis}
\begin{verbatim}
double glp_ipt_col_prim(glp_prob *lp, int j);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_ipt_col_prim| returns primal value of the
structural variable associated with \verb|j|-th column.
\subsection{glp\_ipt\_col\_dual---retrieve column dual value}
\subsubsection*{Synopsis}
\begin{verbatim}
double glp_ipt_col_dual(glp_prob *lp, int j);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_ipt_col_dual| returns dual value (i.e. reduced
cost) of the structural variable associated with \verb|j|-th column.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newpage
\section{Mixed integer programming routines}
\subsection{glp\_set\_col\_kind---set (change) column kind}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_set_col_kind(glp_prob *mip, int j, int kind);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_set_col_kind| sets (changes) the kind of
\verb|j|-th column (structural variable) as specified by the parameter
\verb|kind|:
\begin{tabular}{@{}ll}
\verb|GLP_CV| & continuous variable; \\
\verb|GLP_IV| & integer variable; \\
\verb|GLP_BV| & binary variable. \\
\end{tabular}
%If a column is set to \verb|GLP_IV|, its bounds must be exact integer
%numbers with no tolerance, such that the condition
%\verb|bnd == floor(bnd)| would hold.
Setting a column to \verb|GLP_BV| has the same effect as if it were
set to \verb|GLP_IV|, its lower bound were set 0, and its upper bound
were set to 1.
\subsection{glp\_get\_col\_kind---retrieve column kind}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_get_col_kind(glp_prob *mip, int j);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_col_kind| returns the kind of \verb|j|-th
column (structural variable) as follows:
\begin{tabular}{@{}ll}
\verb|GLP_CV| & continuous variable; \\
\verb|GLP_IV| & integer variable; \\
\verb|GLP_BV| & binary variable. \\
\end{tabular}
\subsection{glp\_get\_num\_int---retrieve number of integer columns}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_get_num_int(glp_prob *mip);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_num_int| returns the number of columns
(structural variables), which are marked as integer. Note that this
number {\it does} include binary columns.
\subsection{glp\_get\_num\_bin---retrieve number of binary columns}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_get_num_bin(glp_prob *mip);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_get_num_bin| returns the number of columns
(structural variables), which are marked as integer and whose lower
bound is zero and upper bound is one.
\subsection{glp\_intopt---solve MIP problem with the branch-and-cut
method}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_intopt(glp_prob *mip, const glp_iocp *parm);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_intopt| is a driver to the MIP solver based on
the branch-and-cut method, which is a hybrid of branch-and-bound and
cutting plane methods.
If the presolver is disabled (see paragraph ``Control parameters''
below), on entry to the routine \verb|glp_intopt| the problem object,
which the parameter \verb|mip| points to, should contain optimal
solution to LP relaxation (it can be obtained, for example, with the
routine \verb|glp_simplex|). Otherwise, if the presolver is enabled, it
is not necessary.
The MIP solver has a set of control parameters. Values of the control
parameters can be passed in the structure \verb|glp_iocp|, which the
parameter \verb|parm| points to. For detailed description of this
structure see paragraph ``Control parameters'' below. Before specifying
some control parameters the application program should initialize the
structure \verb|glp_iocp| by default values of all control parameters
using the routine \verb|glp_init_iocp| (see the next subsection). This
is needed for backward compatibility, because in the future there may
appear new members in the structure \verb|glp_iocp|.
The parameter \verb|parm| can be specified as \verb|NULL|, in which case
the solver uses default settings.
Note that the GLPK branch-and-cut solver is not perfect, so it is unable
to solve hard or very large scale MIP instances for a reasonable time.
\subsubsection*{Returns}
\def\arraystretch{1}
\begin{tabular}{@{}p{25mm}p{97.3mm}@{}}
0 & The MIP problem instance has been successfully solved. (This code
does {\it not} necessarily mean that the solver has found optimal
solution. It only means that the solution process was successful.) \\
\verb|GLP_EBOUND| & Unable to start the search, because some
double-bounded variables have incorrect bounds or some integer variables
have non-integer (fractional) bounds.\\
\verb|GLP_EROOT| & Unable to start the search, because optimal basis for
initial LP relaxation is not provided. (This code may appear only if the
presolver is disabled.)\\
\verb|GLP_ENOPFS| & Unable to start the search, because LP relaxation
of the MIP problem instance has no primal feasible solution. (This code
may appear only if the presolver is enabled.)\\
\verb|GLP_ENODFS| & Unable to start the search, because LP relaxation
of the MIP problem instance has no dual feasible solution. In other
word, this code means that if the LP relaxation has at least one primal
feasible solution, its optimal solution is unbounded, so if the MIP
problem has at least one integer feasible solution, its (integer)
optimal solution is also unbounded. (This code may appear only if the
presolver is enabled.)\\
\verb|GLP_EFAIL| & The search was prematurely terminated due to the
solver failure.\\
\verb|GLP_EMIPGAP| & The search was prematurely terminated, because the
relative mip gap tolerance has been reached.\\
\verb|GLP_ETMLIM| & The search was prematurely terminated, because the
time limit has been exceeded.\\
\verb|GLP_ESTOP| & The search was prematurely terminated by application.
(This code may appear only if the advanced solver interface is used.)\\
\end{tabular}
\subsubsection*{Built-in MIP presolver}
The branch-and-cut solver has {\it built-in MIP presolver}. It is
a subprogram that transforms the original MIP problem specified in the
problem object to an equivalent MIP problem, which may be easier for
solving with the branch-and-cut method than the original one. For
example, the presolver can remove redundant constraints and variables,
whose optimal values are known, perform bound and coefficient reduction,
etc. Once the transformed MIP problem has been solved, the presolver
transforms its solution back to corresponding solution of the original
problem.
Presolving is an optional feature of the routine \verb|glp_intopt|, and
by default it is disabled. In order to enable the MIP presolver, the
control parameter \verb|presolve| should be set to \verb|GLP_ON| (see
paragraph ``Control parameters'' below).
\subsubsection*{Advanced solver interface}
The routine \verb|glp_intopt| allows the user to control the
branch-and-cut search by passing to the solver a user-defined callback
routine. For more details see Chapter ``Branch-and-Cut API Routines''.
\subsubsection*{Terminal output}
Solving a MIP problem may take a long time, so the solver reports some
information about best known solutions, which is sent to the terminal.
This information has the following format:
\begin{verbatim}
+nnn: mip = xxx <rho> yyy gap (ppp; qqq)
\end{verbatim}
\noindent
where: `\verb|nnn|' is the simplex iteration number; `\verb|xxx|' is a
value of the objective function for the best known integer feasible
solution (if no integer feasible solution has been found yet,
`\verb|xxx|' is the text `\verb|not found yet|'); `\verb|rho|' is the
string `\verb|>=|' (in case of minimization) or `\verb|<=|' (in case of
maximization); `\verb|yyy|' is a global bound for exact integer optimum
(i.e. the exact integer optimum is always in the range from `\verb|xxx|'
to `\verb|yyy|'); `\verb|gap|' is the relative mip gap, in percents,
computed as $gap=|xxx-yyy|/(|xxx|+{\tt DBL\_EPSILON})\cdot 100\%$ (if
$gap$ is greater than $999.9\%$, it is not printed); `\verb|ppp|' is the
number of subproblems in the active list, `\verb|qqq|' is the number of
subproblems which have been already fathomed and therefore removed from
the branch-and-bound search tree.
\subsubsection{Control parameters}
This paragraph describes all control parameters currently used in the
MIP solver. Symbolic names of control parameters are names of
corresponding members in the structure \verb|glp_iocp|.
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt int msg\_lev} (default: {\tt GLP\_MSG\_ALL})}
\\
&Message level for terminal output:\\
&\verb|GLP_MSG_OFF|---no output;\\
&\verb|GLP_MSG_ERR|---error and warning messages only;\\
&\verb|GLP_MSG_ON |---normal output;\\
&\verb|GLP_MSG_ALL|---full output (including informational messages).
\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt int br\_tech} (default: {\tt GLP\_BR\_DTH})}
\\
&Branching technique option:\\
&\verb|GLP_BR_FFV|---first fractional variable;\\
&\verb|GLP_BR_LFV|---last fractional variable;\\
&\verb|GLP_BR_MFV|---most fractional variable;\\
&\verb|GLP_BR_DTH|---heuristic by Driebeck and Tomlin;\\
&\verb|GLP_BR_PCH|---hybrid pseudocost heuristic.\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt int bt\_tech} (default: {\tt GLP\_BT\_BLB})}
\\
&Backtracking technique option:\\
&\verb|GLP_BT_DFS|---depth first search;\\
&\verb|GLP_BT_BFS|---breadth first search;\\
&\verb|GLP_BT_BLB|---best local bound;\\
&\verb|GLP_BT_BPH|---best projection heuristic.\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt int pp\_tech} (default: {\tt GLP\_PP\_ALL})}
\\
&Preprocessing technique option:\\
&\verb|GLP_PP_NONE|---disable preprocessing;\\
&\verb|GLP_PP_ROOT|---perform preprocessing only on the root level;\\
&\verb|GLP_PP_ALL |---perform preprocessing on all levels.\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt int fp\_heur} (default: {\tt GLP\_OFF})}
\\
&Feasibility pump heuristic option:\\
&\verb|GLP_ON |---enable applying the feasibility pump heuristic;\\
&\verb|GLP_OFF|---disable applying the feasibility pump heuristic.\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt int gmi\_cuts} (default: {\tt GLP\_OFF})}\\
&Gomory's mixed integer cut option:\\
&\verb|GLP_ON |---enable generating Gomory's cuts;\\
&\verb|GLP_OFF|---disable generating Gomory's cuts.\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt int mir\_cuts} (default: {\tt GLP\_OFF})}\\
&Mixed integer rounding (MIR) cut option:\\
&\verb|GLP_ON |---enable generating MIR cuts;\\
&\verb|GLP_OFF|---disable generating MIR cuts.\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt int cov\_cuts} (default: {\tt GLP\_OFF})}\\
&Mixed cover cut option:\\
&\verb|GLP_ON |---enable generating mixed cover cuts;\\
&\verb|GLP_OFF|---disable generating mixed cover cuts.\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt int clq\_cuts} (default: {\tt GLP\_OFF})}\\
&Clique cut option:\\
&\verb|GLP_ON |---enable generating clique cuts;\\
&\verb|GLP_OFF|---disable generating clique cuts.\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt double tol\_int} (default: {\tt 1e-5})}\\
&Absolute tolerance used to check if optimal solution to the current LP
relaxation is integer feasible. (Do not change this parameter without
detailed understanding its purpose.)\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt double tol\_obj} (default: {\tt 1e-7})}\\
&Relative tolerance used to check if the objective value in optimal
solution to the current LP relaxation is not better than in the best
known integer feasible solution. (Do not change this parameter without
detailed understanding its purpose.)\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt double mip\_gap} (default: {\tt 0.0})}\\
&The relative mip gap tolerance. If the relative mip gap for currently
known best integer feasible solution falls below this tolerance, the
solver terminates the search. This allows obtainig suboptimal integer
feasible solutions if solving the problem to optimality takes too long
time.\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt int tm\_lim} (default: {\tt INT\_MAX})}\\
&Searching time limit, in milliseconds.\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt int out\_frq} (default: {\tt 5000})}\\
&Output frequency, in milliseconds. This parameter specifies how
frequently the solver sends information about the solution process to
the terminal.\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt int out\_dly} (default: {\tt 10000})}\\
&Output delay, in milliseconds. This parameter specifies how long the
solver should delay sending information about solution of the current
LP relaxation with the simplex method to the terminal.\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}
{{\tt void (*cb\_func)(glp\_tree *tree, void *info)}
(default: {\tt NULL})}\\
&Entry point to the user-defined callback routine. \verb|NULL| means
the advanced solver interface is not used. For more details see Chapter
``Branch-and-Cut API Routines''.\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt void *cb\_info} (default: {\tt NULL})}\\
&Transit pointer passed to the routine \verb|cb_func| (see above).\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt int cb\_size} (default: {\tt 0})}\\
&The number of extra (up to 256) bytes allocated for each node of the
branch-and-bound tree to store application-specific data. On creating
a node these bytes are initialized by binary zeros.\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt int presolve} (default: {\tt GLP\_OFF})}\\
&MIP presolver option:\\
&\verb|GLP_ON |---enable using the MIP presolver;\\
&\verb|GLP_OFF|---disable using the MIP presolver.\\
\end{tabular}
\medskip
\noindent\begin{tabular}{@{}p{17pt}@{}p{120.5mm}@{}}
\multicolumn{2}{@{}l}{{\tt int binarize} (default: {\tt GLP\_OFF})}\\
&Binarization option (used only if the presolver is enabled):\\
&\verb|GLP_ON |---replace general integer variables by binary ones;\\
&\verb|GLP_OFF|---do not use binarization.\\
\end{tabular}
\subsection{glp\_init\_iocp---initialize integer optimizer control
parameters}
\subsubsection*{Synopsis}
\begin{verbatim}
void glp_init_iocp(glp_iocp *parm);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|glp_init_iocp| initializes control parameters, which
are used by the branch-and-cut solver, with default values.
Default values of the control parameters are stored in a \verb|glp_iocp|
structure, which the parameter \verb|parm| points to.
\subsection{glp\_mip\_status---determine status of MIP solution}
\subsubsection*{Synopsis}
\begin{verbatim}
int glp_mip_status(glp_prob *mip);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_mip_status| reports the status of a MIP solution
found by the MIP solver as follows:
\smallskip
\begin{tabular}{@{}p{25mm}p{91.3mm}@{}}
\verb|GLP_UNDEF| & MIP solution is undefined. \\
\verb|GLP_OPT| & MIP solution is integer optimal. \\
\verb|GLP_FEAS| & MIP solution is integer feasible, however, its
optimality (or non-optimality) has not been proven, perhaps due to
premature termination of the search. \\
\end{tabular}
\begin{tabular}{@{}p{25mm}p{91.3mm}@{}}
\verb|GLP_NOFEAS| & problem has no integer feasible solution (proven by
the solver). \\
\end{tabular}
\subsection{glp\_mip\_obj\_val---retrieve objective value}
\subsubsection*{Synopsis}
\begin{verbatim}
double glp_mip_obj_val(glp_prob *mip);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_mip_obj_val| returns value of the objective
function for MIP solution.
\subsection{glp\_mip\_row\_val---retrieve row value}
\subsubsection*{Synopsis}
\begin{verbatim}
double glp_mip_row_val(glp_prob *mip, int i);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_mip_row_val| returns value of the auxiliary
variable associated with \verb|i|-th row for MIP solution.
\subsection{glp\_mip\_col\_val---retrieve column value}
\subsubsection*{Synopsis}
\begin{verbatim}
double glp_mip_col_val(glp_prob *mip, int j);
\end{verbatim}
\subsubsection*{Returns}
The routine \verb|glp_mip_col_val| returns value of the structural
variable associated with \verb|j|-th column for MIP solution.
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
\newpage
\section{Additional routines}
\subsection{lpx\_check\_kkt---check Karush-Kuhn-Tucker optimality
conditions}
\subsubsection*{Synopsis}
\begin{verbatim}
void lpx_check_kkt(glp_prob *lp, int scaled, LPXKKT *kkt);
\end{verbatim}
\subsubsection*{Description}
The routine \verb|lpx_check_kkt| checks Karush-Kuhn-Tucker optimality
conditions for basic solution. It is assumed that both primal and dual
components of basic solution are valid.
If the parameter \verb|scaled| is zero, the optimality conditions are
checked for the original, unscaled LP problem. Otherwise, if the
parameter \verb|scaled| is non-zero, the routine checks the conditions
for an internally scaled LP problem.
The parameter \verb|kkt| is a pointer to the structure \verb|LPXKKT|,
to which the routine stores results of the check. Members of this
structure are shown in the table below.
\begin{table}[h]
\begin{center}
\begin{tabular}{@{}c|l|l@{}}
Condition & Member & Comment \\
\hline
(KKT.PE) & \verb|pe_ae_max| &
Largest absolute error \\
& \verb|pe_ae_row| &
Number of row with largest absolute error \\
& \verb|pe_re_max| &
Largest relative error \\
& \verb|pe_re_row| &
Number of row with largest relative error \\
& \verb|pe_quality| &
Quality of primal solution \\
\hline
(KKT.PB) & \verb|pb_ae_max| &
Largest absolute error \\
& \verb|pb_ae_ind| &
Number of variable with largest absolute error \\
& \verb|pb_re_max| &
Largest relative error \\
& \verb|pb_re_ind| &
Number of variable with largest relative error \\
& \verb|pb_quality| &
Quality of primal feasibility \\
\hline
(KKT.DE) & \verb|de_ae_max| &
Largest absolute error \\
& \verb|de_ae_col| &
Number of column with largest absolute error \\
& \verb|de_re_max| &
Largest relative error \\
& \verb|de_re_col| &
Number of column with largest relative error \\
& \verb|de_quality| &
Quality of dual solution \\
\hline
(KKT.DB) & \verb|db_ae_max| &
Largest absolute error \\
& \verb|db_ae_ind| &
Number of variable with largest absolute error \\
& \verb|db_re_max| &
Largest relative error \\
& \verb|db_re_ind| &
Number of variable with largest relative error \\
& \verb|db_quality| &
Quality of dual feasibility \\
\end{tabular}
\end{center}
\end{table}
The routine performs all computations using only components of the
given LP problem and the current basic solution.
\subsubsection*{Background}
The first condition checked by the routine is:
$$x_R - A x_S = 0, \eqno{\rm (KKT.PE)}$$
where $x_R$ is the subvector of auxiliary variables (rows), $x_S$ is the
subvector of structural variables (columns), $A$ is the constraint
matrix. This condition expresses the requirement that all primal
variables must satisfy to the system of equality constraints of the
original LP problem. In case of exact arithmetic this condition would be
satisfied for any basic solution; however, in case of inexact
(floating-point) arithmetic, this condition shows how accurate the
primal basic solution is, that depends on accuracy of a representation
of the basis matrix used by the simplex method routines.
The second condition checked by the routine is:
$$l_k \leq x_k \leq u_k {\rm \ \ \ for\ all}\ k=1,\dots,m+n,
\eqno{\rm (KKT.PB)}$$
where $x_k$ is auxiliary ($1\leq k\leq m$) or structural
($m+1\leq k\leq m+n$) variable, $l_k$ and $u_k$ are, respectively,
lower and upper bounds of the variable $x_k$ (including cases of
infinite bounds). This condition expresses the requirement that all
primal variables must satisfy to bound constraints of the original LP
problem. Since in case of basic solution all non-basic variables are
placed on their bounds, actually the condition (KKT.PB) needs to be
checked for basic variables only. If the primal basic solution has
sufficient accuracy, this condition shows primal feasibility of the
solution.
The third condition checked by the routine is:
$${\rm grad}\;Z = c = (\tilde{A})^T \pi + d,$$
where $Z$ is the objective function, $c$ is the vector of objective
coefficients, $(\tilde{A})^T$ is a matrix transposed to the expanded
constraint matrix $\tilde{A} = (I|-A)$, $\pi$ is a vector of Lagrange
multipliers that correspond to equality constraints of the original LP
problem, $d$ is a vector of Lagrange multipliers that correspond to
bound constraints for all (auxiliary and structural) variables of the
original LP problem. Geometrically the third condition expresses the
requirement that the gradient of the objective function must belong to
the orthogonal complement of a linear subspace defined by the equality
and active bound constraints, i.e. that the gradient must be a linear
combination of normals to the constraint planes, where Lagrange
multipliers $\pi$ and $d$ are coefficients of that linear combination.
To eliminate the vector $\pi$ the third condition can be rewritten as:
$$
\left(\begin{array}{@{}c@{}}I \\ -A^T\end{array}\right) \pi =
\left(\begin{array}{@{}c@{}}d_R \\ d_S\end{array}\right) +
\left(\begin{array}{@{}c@{}}c_R \\ c_S\end{array}\right),
$$
or, equivalently:
$$
\begin{array}{r@{}c@{}c}
\pi + d_R&\ =\ &c_R, \\
-A^T\pi + d_S&\ =\ &c_S. \\
\end{array}
$$
Then substituting the vector $\pi$ from the first equation into the
second one we have:
$$A^T (d_R - c_R) + (d_S - c_S) = 0, \eqno{\rm (KKT.DE)}$$
where $d_R$ is the subvector of reduced costs of auxiliary variables
(rows), $d_S$ is the subvector of reduced costs of structural variables
(columns), $c_R$ and $c_S$ are subvectors of objective coefficients at,
respectively, auxiliary and structural variables, $A^T$ is a matrix
transposed to the constraint matrix of the original LP problem. In case
of exact arithmetic this condition would be satisfied for any basic
solution; however, in case of inexact (floating-point) arithmetic, this
condition shows how accurate the dual basic solution is, that depends on
accuracy of a representation of the basis matrix used by the simplex
method routines.
The last, fourth condition checked by the routine is (KKT.DB):
\medskip
\begin{tabular}{r@{}c@{}ll}
&$\ d_k\ $& $=0,$&if $x_k$ is basic or free non-basic variable \\
$0\leq$&$\ d_k\ $&$<+\infty$&if $x_k$ is non-basic on its lower
(minimization) \\
&&&or upper (maximization) bound \\
$-\infty<$&$\ d_k\ $&$\leq 0$&if $x_k$ is non-basic on its upper
(minimization) \\
&&&or lower (maximization) bound \\
$-\infty<$&$\ d_k\ $&$<+\infty$&if $x_k$ is non-basic fixed variable \\
\end{tabular}
\medskip
\noindent
for all $k=1,\dots,m+n$, where $d_k$ is a reduced cost (Lagrange
multiplier) of auxiliary ($1\leq k\leq m$) or structural
($m+1\leq k\leq m+n$) variable $x_k$. Geometrically this condition
expresses the requirement that constraints of the original problem must
"hold" the point preventing its movement along the anti-gradient (in
case of minimization) or the gradient (in case of maximization) of the
objective function. Since in case of basic solution reduced costs of
all basic variables are placed on their (zero) bounds, actually the
condition (KKT.DB) needs to be checked for non-basic variables only.
If the dual basic solution has sufficient accuracy, this condition shows
dual feasibility of the solution.
Should note that the complete set of Karush-Kuhn-Tucker optimality
conditions also includes the fifth, so called complementary slackness
condition, which expresses the requirement that at least either a primal
variable $x_k$ or its dual counterpart $d_k$ must be on its bound for
all $k=1,\dots,m+n$. However, being always satisfied by definition for
any basic solution that condition is not checked by the routine.
To check the first condition (KKT.PE) the routine computes a vector of
residuals:
$$g = x_R - A x_S,$$
determines component of this vector that correspond to largest absolute
and relative errors:
\medskip
\hspace{30mm}
\verb|pe_ae_max| $\displaystyle{= \max_{1\leq i\leq m}|g_i|}$,
\medskip
\hspace{30mm}
\verb|pe_re_max| $\displaystyle{= \max_{1\leq i\leq m}
\frac{|g_i|}{1+|(x_R)_i|}}$,
\medskip
\noindent
and stores these quantities and corresponding row indices to the
structure \verb|LPXKKT|.
To check the second condition (KKT.PB) the routine computes a vector
of residuals:
$$
h_k = \left\{
\begin{array}{ll}
0, & {\rm if}\ l_k \leq x_k \leq u_k \\
x_k - l_k, & {\rm if}\ x_k < l_k \\
x_k - u_k, & {\rm if}\ x_k > u_k \\
\end{array}
\right.
$$
for all $k=1,\dots,m+n$, determines components of this vector that
correspond to largest absolute and relative errors:
\medskip
\hspace{30mm}
\verb|pb_ae_max| $\displaystyle{= \max_{1\leq k \leq m+n}|h_k|}$,
\medskip
\hspace{30mm}
\verb|pb_re_max| $\displaystyle{= \max_{1\leq k \leq m+n}
\frac{|h_k|}{1+|x_k|}}$,
\medskip
\noindent
and stores these quantities and corresponding variable indices to the
structure \verb|LPXKKT|.
To check the third condition (KKT.DE) the routine computes a vector of
residuals:
$$u = A^T (d_R - c_R) + (d_S - c_S),$$
determines components of this vector that correspond to largest
absolute and relative errors:
\medskip
\hspace{30mm}
\verb|de_ae_max| $\displaystyle{= \max_{1\leq j\leq n}|u_j|}$,
\medskip
\hspace{30mm}
\verb|de_re_max| $\displaystyle{= \max_{1\leq j\leq n}
\frac{|u_j|}{1+|(d_S)_j - (c_S)_j|}}$,
\medskip
\noindent
and stores these quantities and corresponding column indices to the
structure \verb|LPXKKT|.
To check the fourth condition (KKT.DB) the routine computes a vector
of residuals:
$$
v_k = \left\{
\begin{array}{ll}
0, & {\rm if}\ d_k\ {\rm has\ correct\ sign} \\
d_k, & {\rm if}\ d_k\ {\rm has\ wrong\ sign} \\
\end{array}
\right.
$$
for all $k=1,\dots,m+n$, determines components of this vector that
correspond to largest absolute and relative errors:
\medskip
\hspace{30mm}
\verb|db_ae_max| $\displaystyle{= \max_{1\leq k\leq m+n}|v_k|}$,
\medskip
\hspace{30mm}
\verb|db_re_max| $\displaystyle{= \max_{1\leq k\leq m+n}
\frac{|v_k|}{1+|d_k - c_k|}}$,
\medskip
\noindent
and stores these quantities and corresponding variable indices to the
structure \verb|LPXKKT|.
Using the relative errors for all the four conditions listed above the
routine
\verb|lpx_check_kkt| also estimates a "quality" of the basic solution
from the standpoint of these conditions and stores corresponding
quality indicators to the structure \verb|LPXKKT|:
\verb|pe_quality|---quality of primal solution;
\verb|pb_quality|---quality of primal feasibility;
\verb|de_quality|---quality of dual solution;
\verb|db_quality|---quality of dual feasibility.
Each of these indicators is assigned to one of the following four
values:
\verb|'H'| means high quality,
\verb|'M'| means medium quality,
\verb|'L'| means low quality, or
\verb|'?'| means wrong or infeasible solution.
If all the indicators show high or medium quality (for an internally
scaled LP problem, i.e. when the parameter \verb|scaled| in a call to
the routine \verb|lpx_check_kkt| is non-zero), the user can be sure that
the obtained basic solution is quite accurate.
If some of the indicators show low quality, the solution can still be
considered as relevant, though an additional analysis is needed
depending on which indicator shows low quality.
If the indicator \verb|pe_quality| is assigned to \verb|'?'|, the
primal solution is wrong. If the indicator \verb|de_quality| is assigned
to \verb|'?'|, the dual solution is wrong.
If the indicator \verb|db_quality| is assigned to \verb|'?'| while
other indicators show a good quality, this means that the current
basic solution being primal feasible is not dual feasible. Similarly,
if the indicator \verb|pb_quality| is assigned to \verb|'?'| while
other indicators are not, this means that the current basic solution
being dual feasible is not primal feasible.
%* eof *%
|