1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331
|
# PROD, a multiperiod production model
#
# References:
# Robert Fourer, David M. Gay and Brian W. Kernighan, "A Modeling Language
# for Mathematical Programming." Management Science 36 (1990) 519-554.
### PRODUCTION SETS AND PARAMETERS ###
set prd 'products'; # Members of the product group
param pt 'production time' {prd} > 0;
# Crew-hours to produce 1000 units
param pc 'production cost' {prd} > 0;
# Nominal production cost per 1000, used
# to compute inventory and shortage costs
### TIME PERIOD SETS AND PARAMETERS ###
param first > 0 integer;
# Index of first production period to be modeled
param last > first integer;
# Index of last production period to be modeled
set time 'planning horizon' := first..last;
### EMPLOYMENT PARAMETERS ###
param cs 'crew size' > 0 integer;
# Workers per crew
param sl 'shift length' > 0;
# Regular-time hours per shift
param rtr 'regular time rate' > 0;
# Wage per hour for regular-time labor
param otr 'overtime rate' > rtr;
# Wage per hour for overtime labor
param iw 'initial workforce' >= 0 integer;
# Crews employed at start of first period
param dpp 'days per period' {time} > 0;
# Regular working days in a production period
param ol 'overtime limit' {time} >= 0;
# Maximum crew-hours of overtime in a period
param cmin 'crew minimum' {time} >= 0;
# Lower limit on average employment in a period
param cmax 'crew maximum' {t in time} >= cmin[t];
# Upper limit on average employment in a period
param hc 'hiring cost' {time} >= 0;
# Penalty cost of hiring a crew
param lc 'layoff cost' {time} >= 0;
# Penalty cost of laying off a crew
### DEMAND PARAMETERS ###
param dem 'demand' {prd,first..last+1} >= 0;
# Requirements (in 1000s)
# to be met from current production and inventory
param pro 'promoted' {prd,first..last+1} logical;
# true if product will be the subject
# of a special promotion in the period
### INVENTORY AND SHORTAGE PARAMETERS ###
param rir 'regular inventory ratio' >= 0;
# Proportion of non-promoted demand
# that must be in inventory the previous period
param pir 'promotional inventory ratio' >= 0;
# Proportion of promoted demand
# that must be in inventory the previous period
param life 'inventory lifetime' > 0 integer;
# Upper limit on number of periods that
# any product may sit in inventory
param cri 'inventory cost ratio' {prd} > 0;
# Inventory cost per 1000 units is
# cri times nominal production cost
param crs 'shortage cost ratio' {prd} > 0;
# Shortage cost per 1000 units is
# crs times nominal production cost
param iinv 'initial inventory' {prd} >= 0;
# Inventory at start of first period; age unknown
param iil 'initial inventory left' {p in prd, t in time}
:= iinv[p] less sum {v in first..t} dem[p,v];
# Initial inventory still available for allocation
# at end of period t
param minv 'minimum inventory' {p in prd, t in time}
:= dem[p,t+1] * (if pro[p,t+1] then pir else rir);
# Lower limit on inventory at end of period t
### VARIABLES ###
var Crews{first-1..last} >= 0;
# Average number of crews employed in each period
var Hire{time} >= 0; # Crews hired from previous to current period
var Layoff{time} >= 0; # Crews laid off from previous to current period
var Rprd 'regular production' {prd,time} >= 0;
# Production using regular-time labor, in 1000s
var Oprd 'overtime production' {prd,time} >= 0;
# Production using overtime labor, in 1000s
var Inv 'inventory' {prd,time,1..life} >= 0;
# Inv[p,t,a] is the amount of product p that is
# a periods old -- produced in period (t+1)-a --
# and still in storage at the end of period t
var Short 'shortage' {prd,time} >= 0;
# Accumulated unsatisfied demand at the end of period t
### OBJECTIVE ###
minimize cost:
sum {t in time} rtr * sl * dpp[t] * cs * Crews[t] +
sum {t in time} hc[t] * Hire[t] +
sum {t in time} lc[t] * Layoff[t] +
sum {t in time, p in prd} otr * cs * pt[p] * Oprd[p,t] +
sum {t in time, p in prd, a in 1..life} cri[p] * pc[p] * Inv[p,t,a] +
sum {t in time, p in prd} crs[p] * pc[p] * Short[p,t];
# Full regular wages for all crews employed, plus
# penalties for hiring and layoffs, plus
# wages for any overtime worked, plus
# inventory and shortage costs
# (All other production costs are assumed
# to depend on initial inventory and on demands,
# and so are not included explicitly.)
### CONSTRAINTS ###
rlim 'regular-time limit' {t in time}:
sum {p in prd} pt[p] * Rprd[p,t] <= sl * dpp[t] * Crews[t];
# Hours needed to accomplish all regular-time
# production in a period must not exceed
# hours available on all shifts
olim 'overtime limit' {t in time}:
sum {p in prd} pt[p] * Oprd[p,t] <= ol[t];
# Hours needed to accomplish all overtime
# production in a period must not exceed
# the specified overtime limit
empl0 'initial crew level': Crews[first-1] = iw;
# Use given initial workforce
empl 'crew levels' {t in time}: Crews[t] = Crews[t-1] + Hire[t] - Layoff[t];
# Workforce changes by hiring or layoffs
emplbnd 'crew limits' {t in time}: cmin[t] <= Crews[t] <= cmax[t];
# Workforce must remain within specified bounds
dreq1 'first demand requirement' {p in prd}:
Rprd[p,first] + Oprd[p,first] + Short[p,first]
- Inv[p,first,1] = dem[p,first] less iinv[p];
dreq 'demand requirements' {p in prd, t in first+1..last}:
Rprd[p,t] + Oprd[p,t] + Short[p,t] - Short[p,t-1]
+ sum {a in 1..life} (Inv[p,t-1,a] - Inv[p,t,a])
= dem[p,t] less iil[p,t-1];
# Production plus increase in shortage plus
# decrease in inventory must equal demand
ireq 'inventory requirements' {p in prd, t in time}:
sum {a in 1..life} Inv[p,t,a] + iil[p,t] >= minv[p,t];
# Inventory in storage at end of period t
# must meet specified minimum
izero 'impossible inventories' {p in prd, v in 1..life-1, a in v+1..life}:
Inv[p,first+v-1,a] = 0;
# In the vth period (starting from first)
# no inventory may be more than v periods old
# (initial inventories are handled separately)
ilim1 'new-inventory limits' {p in prd, t in time}:
Inv[p,t,1] <= Rprd[p,t] + Oprd[p,t];
# New inventory cannot exceed
# production in the most recent period
ilim 'inventory limits' {p in prd, t in first+1..last, a in 2..life}:
Inv[p,t,a] <= Inv[p,t-1,a-1];
# Inventory left from period (t+1)-p
# can only decrease as time goes on
### DATA ###
data;
set prd := 18REG 24REG 24PRO ;
param first := 1 ;
param last := 13 ;
param life := 2 ;
param cs := 18 ;
param sl := 8 ;
param iw := 8 ;
param rtr := 16.00 ;
param otr := 43.85 ;
param rir := 0.75 ;
param pir := 0.80 ;
param : pt pc cri crs iinv :=
18REG 1.194 2304. 0.015 1.100 82.0
24REG 1.509 2920. 0.015 1.100 792.2
24PRO 1.509 2910. 0.015 1.100 0.0 ;
param : dpp ol cmin cmax hc lc :=
1 19.5 96.0 0.0 8.0 7500 7500
2 19.0 96.0 0.0 8.0 7500 7500
3 20.0 96.0 0.0 8.0 7500 7500
4 19.0 96.0 0.0 8.0 7500 7500
5 19.5 96.0 0.0 8.0 15000 15000
6 19.0 96.0 0.0 8.0 15000 15000
7 19.0 96.0 0.0 8.0 15000 15000
8 20.0 96.0 0.0 8.0 15000 15000
9 19.0 96.0 0.0 8.0 15000 15000
10 20.0 96.0 0.0 8.0 15000 15000
11 20.0 96.0 0.0 8.0 7500 7500
12 18.0 96.0 0.0 8.0 7500 7500
13 18.0 96.0 0.0 8.0 7500 7500 ;
param dem (tr) :
18REG 24REG 24PRO :=
1 63.8 1212.0 0.0
2 76.0 306.2 0.0
3 88.4 319.0 0.0
4 913.8 208.4 0.0
5 115.0 298.0 0.0
6 133.8 328.2 0.0
7 79.6 959.6 0.0
8 111.0 257.6 0.0
9 121.6 335.6 0.0
10 470.0 118.0 1102.0
11 78.4 284.8 0.0
12 99.4 970.0 0.0
13 140.4 343.8 0.0
14 63.8 1212.0 0.0 ;
param pro (tr) :
18REG 24REG 24PRO :=
1 0 1 0
2 0 0 0
3 0 0 0
4 1 0 0
5 0 0 0
6 0 0 0
7 0 1 0
8 0 0 0
9 0 0 0
10 1 0 1
11 0 0 0
12 0 0 0
13 0 1 0
14 0 1 0 ;
end;
|