1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565
|
# DIST, a product distribution model
#
# References:
# Robert Fourer, David M. Gay and Brian W. Kernighan, "A Modeling Language
# for Mathematical Programming." Management Science 36 (1990) 519-554.
### SHIPPING SETS AND PARAMETERS ###
set whse 'warehouses'; # Locations from which demand is satisfied
set dctr 'distribution centers' within whse;
# Locations from which product may be shipped
param sc 'shipping cost' {dctr,whse} >= 0;
# Shipping costs, to whse from dctr, in $ / 100 lb
param huge 'largest shipping cost' > 0;
# Largest cost allowed for a usable shipping route
param msr 'minimum size restriction' {dctr,whse} logical;
# True indicates a minimum-size restriction on
# direct shipments using this dctr --> whse route
param dsr 'direct shipment requirement' {dctr} >= 0;
# Minimum total demand, in pallets, needed to
# allow shipment on routes subject to the
# minimum size restriction
### PLANT SETS AND PARAMETERS ###
set fact 'factories' within dctr;
# Locations where product is manufactured
param rtmin 'regular-time total minimum' >= 0;
# Lower limit on (average) total regular-time
# crews employed at all factories
param rtmax 'regular-time total maximum' >= rtmin;
# Upper limit on (average) total regular-time
# crews employed at all factories
param otmin 'overtime total minimum' >= 0;
# Lower limit on total overtime hours at all factories
param otmax 'overtime total maximum' >= otmin;
# Upper limit on total overtime hours at all factories
param rmin 'regular-time minimums' {fact} >= 0;
# Lower limits on (average) regular-time crews
param rmax 'regular-time maximums' {f in fact} >= rmin[f];
# Upper limits on (average) regular-time crews
param omin 'overtime minimums' {fact} >= 0;
# Lower limits on overtime hours
param omax 'overtime maximums' {f in fact} >= omin[f];
# Upper limits on overtime hours
param hd 'hours per day' {fact} >= 0;
# Regular-time hours per working day
param dp 'days in period' {fact} > 0;
# Working days in the current planning period
### PRODUCT SETS AND PARAMETERS ###
set prd 'products'; # Elements of the product group
param wt 'weight' {prd} > 0;
# Weight in 100 lb / 1000 cases
param cpp 'cases per pallet' {prd} > 0;
# Cases of product per shipping pallet
param tc 'transshipment cost' {prd} >= 0;
# Transshipment cost in $ / 1000 cases
param pt 'production time' {prd,fact} >= 0;
# Crew-hours to produce 1000 cases
param rpc 'regular-time production cost' {prd,fact} >= 0;
# Cost of production on regular time,
# in $ / 1000 cases
param opc 'overtime production cost' {prd,fact} >= 0;
# Cost of production on overtime, in $ / 1000 cases
### DEMAND SETS AND PARAMETERS ###
param dt 'total demand' {prd} >= 0;
# Total demands for products, in 1000s
param ds 'demand shares' {prd,whse} >= 0.0, <= 1.0;
# Historical demand data, from which each
# warehouse's share of total demand is deduced
param dstot {p in prd} := sum {w in whse} ds[p,w];
# Total of demand shares; should be 1, but often isn't
param dem 'demand' {p in prd, w in whse} := dt[p] * ds[p,w] / dstot[p];
# Projected demands to be satisfied, in 1000s
set rt 'shipping routes available' :=
{d in dctr, w in whse:
d <> w and sc[d,w] < huge and
(w in dctr or sum {p in prd} dem[p,w] > 0) and
not (msr[d,w] and sum {p in prd} 1000*dem[p,w]/cpp[p] < dsr[d]) };
# List of ordered pairs that represent routes
# on which shipments are allowed
### VARIABLES ###
var Rprd 'regular-time production' {prd,fact} >= 0;
# Regular-time production of each product
# at each factory, in 1000s of cases
var Oprd 'overtime production' {prd,fact} >= 0;
# Overtime production of each product
# at each factory, in 1000s of cases
var Ship 'shipments' {prd,rt} >= 0;
# Shipments of each product on each allowed route,
# in 1000s of cases
var Trans 'transshipments' {prd,dctr} >= 0;
# Transshipments of each product at each
# distribution center, in 1000s of cases
### OBJECTIVE ###
minimize cost: sum {p in prd, f in fact} rpc[p,f] * Rprd[p,f] +
sum {p in prd, f in fact} opc[p,f] * Oprd[p,f] +
sum {p in prd, (d,w) in rt} sc[d,w] * wt[p] * Ship[p,d,w] +
sum {p in prd, d in dctr} tc[p] * Trans[p,d];
# Total cost: regular production, overtime
# production, shipping, and transshipment
### CONSTRAINTS ###
rtlim 'regular-time total limits':
rtmin <= sum {p in prd, f in fact}
(pt[p,f] * Rprd[p,f]) / (dp[f] * hd[f]) <= rtmax;
# Total crews must lie between limits
otlim 'overtime total limits':
otmin <= sum {p in prd, f in fact} pt[p,f] * Oprd[p,f] <= otmax;
# Total overtime must lie between limits
rlim 'regular-time limits' {f in fact}:
rmin[f] <= sum {p in prd}
(pt[p,f] * Rprd[p,f]) / (dp[f] * hd[f]) <= rmax[f];
# Crews at each factory must lie between limits
olim 'overtime limits' {f in fact}:
omin[f] <= sum {p in prd} pt[p,f] * Oprd[p,f] <= omax[f];
# Overtime at each factory must lie between limits
noRprd 'no regular production' {p in prd, f in fact: rpc[p,f] = 0}:
Rprd[p,f] = 0;
noOprd 'no overtime production' {p in prd, f in fact: opc[p,f] = 0}:
Oprd[p,f] = 0; # Do not produce where specified cost is zero
bal 'material balance' {p in prd, w in whse}:
sum {(v,w) in rt}
Ship [p,v,w] + (if w in fact then Rprd[p,w] + Oprd[p,w]) =
dem[p,w] + (if w in dctr then sum {(w,v) in rt} Ship[p,w,v]);
# Demand is satisfied by shipment into warehouse
# plus production (if it is a factory)
# minus shipment out (if it is a distn. center)
trdef 'transshipment definition' {p in prd, d in dctr}:
Trans[p,d] >= sum {(d,w) in rt} Ship [p,d,w] -
(if d in fact then Rprd[p,d] + Oprd[p,d]);
# Transshipment at a distribution center is
# shipments out less production (if any)
### DATA -- 3 PRODUCTS ###
data;
set prd := 18REG 24REG 24PRO ;
set whse := w01 w02 w03 w04 w05 w06 w08 w09 w12 w14 w15 w17
w18 w19 w20 w21 w24 w25 w26 w27 w28 w29 w30 w31
w32 w33 w34 w35 w36 w37 w38 w39 w40 w41 w42 w43
w44 w45 w46 w47 w48 w49 w50 w51 w53 w54 w55 w56
w57 w59 w60 w61 w62 w63 w64 w65 w66 w68 w69 w71
w72 w73 w74 w75 w76 w77 w78 w79 w80 w81 w82 w83
w84 w85 w86 w87 w89 w90 w91 w92 w93 w94 w95 w96
w98 x22 x23 ;
set dctr := w01 w02 w03 w04 w05 w62 w76 w96 ;
set fact := w01 w05 w96 ;
param huge := 99. ;
param rtmin := 0.0 ;
param rtmax := 8.0 ;
param otmin := 0.0 ;
param otmax := 96.0 ;
param rmin := w01 0.00 w05 0.00 w96 0.00 ;
param rmax := w01 3.00 w05 2.00 w96 3.00 ;
param omin := w01 0.0 w05 0.0 w96 0.0 ;
param omax := w01 48.0 w05 0.0 w96 48.0 ;
param hd := w01 8.0 w05 8.0 w96 8.0 ;
param dp := w01 19.0 w05 19.0 w96 19.0 ;
param wt := 18REG 47.3 24REG 63.0 24PRO 63.0 ;
param tc := 18REG 40.00 24REG 45.00 24PRO 45.00 ;
param dt := 18REG 376.0 24REG 172.4 24PRO 316.3 ;
param cpp := 18REG 102. 24REG 91. 24PRO 91. ;
param dsr := w01 96. w02 96. w03 96. w04 96. w05 96.
w62 96. w76 96. w96 96. ;
param pt (tr) :
18REG 24REG 24PRO :=
w01 1.194 1.429 1.429
w05 1.194 1.509 1.509
w96 0.000 1.600 1.600 ;
param rpc (tr) :
18REG 24REG 24PRO :=
w01 2119. 2653. 2617.
w05 2489. 3182. 3176.
w96 0. 2925. 2918. ;
param opc (tr) :
18REG 24REG 24PRO :=
w01 2903. 3585. 3579.
w05 0. 0. 0.
w96 0. 3629. 3622. ;
param sc default 99.99 (tr) :
w01 w02 w03 w04 w05 w62 w76 w96 :=
w01 . 2.97 1.14 2.08 2.37 1.26 2.42 1.43
w02 4.74 . 4.17 6.12 7.41 3.78 7.04 5.21
w03 2.45 4.74 . 3.67 2.84 0.90 2.41 2.55
w04 1.74 5.03 2.43 . 3.19 2.45 2.69 0.58
w05 2.70 5.16 2.84 2.85 . 3.26 3.34 2.71
w06 1.99 4.17 2.13 2.19 2.52 2.06 2.00 1.51
w08 0.21 2.92 1.24 2.07 2.29 1.25 2.32 1.55
w09 0.66 3.76 1.41 2.47 1.82 1.66 . 1.87
w12 1.38 3.83 1.68 2.53 2.39 . 1.96 1.94
w14 2.47 1.58 2.40 3.59 3.85 2.25 . 3.05
w15 1.06 4.95 2.48 1.39 3.41 1.96 . 1.02
w17 0.88 3.39 1.46 2.00 2.67 1.45 . 1.46
w18 7.90 6.57 7.79 9.59 10.81 . . 6.70
w19 1.42 4.12 1.96 1.99 3.52 1.88 . 1.26
w20 3.03 1.59 2.34 4.76 3.98 1.88 . 3.73
w24 1.58 2.80 2.27 2.87 3.19 1.31 . 2.05
w25 1.51 5.05 2.74 0.57 2.98 . 2.95 0.27
w26 1.75 3.61 2.70 1.54 4.07 3.52 . 1.03
w27 2.48 6.87 3.17 1.59 2.08 3.45 . 0.99
w28 2.05 6.83 2.97 1.13 2.91 . . 1.26
w29 4.03 3.68 4.46 3.20 5.50 . . 3.20
w30 2.48 5.78 2.99 2.24 1.79 3.10 . 1.39
w31 2.34 5.41 2.87 1.67 1.66 . . 1.39
w32 14.36 . . . . . . .
w33 3.87 4.27 5.11 3.48 5.66 4.03 . 3.05
w34 3.26 4.80 3.21 2.70 4.14 . . 1.77
w35 2.34 2.84 2.89 3.35 3.78 2.68 . 2.52
w36 2.43 5.69 2.96 2.95 1.02 2.61 1.07 2.54
w37 2.23 4.64 2.41 1.99 4.30 2.61 . 1.44
w38 4.66 4.36 5.23 3.04 4.46 . . 3.82
w39 1.11 3.51 1.10 2.53 3.07 1.12 . 2.23
w40 2.99 4.78 4.23 1.57 3.92 . . 1.80
w41 4.93 4.00 5.43 4.45 6.31 . . 3.81
w42 3.86 6.55 5.03 2.11 4.41 . . 2.63
w43 4.61 4.45 3.77 1.22 4.31 . . 2.35
w44 2.05 4.48 1.06 3.70 3.46 1.10 . 3.21
w45 0.92 3.42 1.58 3.04 1.82 1.94 . 2.52
w46 1.36 2.44 0.95 3.08 2.78 0.39 2.16 2.37
w47 1.30 3.39 1.60 2.49 4.29 2.04 . 1.68
w48 1.65 3.78 1.03 2.97 2.21 1.31 . 2.74
w49 1.96 3.00 1.50 3.24 3.68 1.00 . 2.99
w50 0.90 4.14 1.60 1.95 3.61 1.61 . 1.52
w51 1.59 3.95 0.25 2.96 2.58 1.00 2.41 2.71
w53 1.59 3.79 1.28 3.12 3.10 0.89 . 2.98
w54 1.72 4.36 1.61 2.92 2.34 1.91 1.97 3.05
w55 2.45 2.73 2.21 4.47 4.30 2.57 . 4.48
w56 1.10 3.73 1.59 2.74 2.33 1.45 . 2.44
w57 0.95 3.39 1.37 2.30 2.47 1.15 . 1.95
w59 3.29 5.35 3.32 3.81 1.52 3.38 1.34 4.08
w60 2.41 6.12 2.46 3.65 2.35 . 1.37 4.06
w61 3.32 5.50 3.41 3.38 1.23 . 0.99 4.28
w62 1.12 3.00 0.82 3.22 2.95 . 3.33 2.53
w63 3.59 6.36 3.25 4.12 1.84 3.59 1.46 4.03
w64 1.85 4.45 2.17 3.43 2.13 2.03 . 4.02
w65 2.78 4.79 2.81 2.94 1.54 2.90 1.07 2.94
w66 3.90 5.79 3.05 3.65 1.36 3.39 1.22 3.57
w68 2.61 5.20 2.90 2.34 1.68 3.19 1.48 2.31
w69 2.94 5.21 2.78 3.43 0.21 3.26 0.68 2.54
w71 2.06 4.98 2.38 2.44 1.59 2.97 1.05 2.55
w72 2.61 5.50 2.83 3.12 1.35 3.23 0.88 2.99
w73 8.52 6.16 8.03 8.83 10.44 7.38 10.26 .
w74 6.11 5.46 9.07 9.38 10.80 . . 8.25
w75 2.66 4.94 2.87 3.69 1.52 3.15 1.24 4.00
w76 1.99 5.26 2.23 3.36 0.58 3.17 . 2.50
w77 4.32 3.07 5.05 3.88 6.04 . . 4.15
w78 5.60 2.59 5.78 5.56 7.10 . . 5.60
w79 4.25 2.32 4.93 4.57 6.04 . . 4.58
w80 5.94 4.00 5.60 7.02 9.46 . . 7.51
w81 5.39 2.21 5.10 6.22 6.46 . . 6.58
w82 8.80 5.69 9.29 9.88 11.69 8.63 11.52 .
w83 4.40 . 5.24 5.21 5.81 3.91 7.04 5.33
w84 5.87 5.43 6.17 5.70 7.63 . . 5.70
w85 3.90 3.65 3.38 4.57 5.64 3.05 . 5.04
w86 5.48 2.10 5.70 6.37 7.33 . . 6.19
w87 8.88 5.54 9.50 9.71 11.64 8.85 11.68 .
w89 4.62 4.01 4.03 6.30 6.30 3.81 . 7.77
w90 4.35 2.72 4.61 4.01 5.60 . . 3.20
w91 7.61 4.42 7.83 6.85 8.79 . . 7.66
w92 7.15 2.69 6.91 7.20 . . . 7.06
w93 3.17 3.95 4.37 3.74 5.05 . . 2.40
w94 1.21 3.07 0.90 2.74 3.17 . 2.63 2.39
w95 5.82 3.29 6.55 7.06 11.47 . . 7.83
w96 1.77 5.20 2.72 0.59 3.47 2.48 . .
w98 3.04 1.92 3.64 3.70 4.90 3.05 . 3.88
x22 4.08 6.25 4.15 4.30 1.77 . 1.77 .
x23 3.39 5.74 3.55 4.08 1.69 . 1.47 . ;
param msr (tr) :
w01 w02 w03 w04 w05 w62 w76 w96 :=
w01 0 0 0 0 0 0 1 0
w02 0 0 0 0 0 0 1 0
w03 0 0 0 0 0 0 1 0
w04 0 0 0 0 0 0 1 0
w05 0 0 0 0 0 0 0 0
w06 0 1 1 1 1 1 1 1
w08 0 1 1 1 1 1 1 1
w09 0 1 1 1 1 1 0 1
w12 0 1 1 1 1 0 1 1
w14 1 1 1 1 1 0 0 1
w15 0 1 1 1 1 1 0 1
w17 0 1 1 1 1 1 0 1
w18 0 1 1 1 1 0 0 1
w19 0 1 1 1 1 0 0 1
w20 1 1 1 1 1 0 0 1
w24 0 1 1 1 1 0 0 1
w25 0 1 1 1 1 0 1 0
w26 1 1 1 0 1 1 0 1
w27 1 1 1 0 1 1 0 1
w28 1 1 1 0 1 0 0 1
w29 0 1 1 1 1 0 0 1
w30 1 1 1 0 1 1 0 1
w31 1 1 1 0 1 0 0 1
w32 0 0 0 0 0 0 0 0
w33 1 0 1 1 1 1 0 1
w34 1 1 1 0 1 0 0 1
w35 1 1 1 1 1 0 0 1
w36 0 1 1 1 0 1 1 1
w37 1 1 1 0 1 1 0 1
w38 1 1 1 0 1 0 0 1
w39 0 1 1 1 1 1 0 1
w40 1 1 1 0 1 0 0 1
w41 1 0 1 1 1 0 0 1
w42 1 1 1 0 1 0 0 1
w43 1 1 1 0 1 0 0 1
w44 1 1 1 1 1 0 0 1
w45 0 1 1 1 1 1 0 1
w46 0 1 1 1 1 0 1 1
w47 0 1 1 1 1 1 0 1
w48 0 1 1 1 1 0 0 1
w49 1 1 1 1 1 0 0 1
w50 0 1 1 1 1 1 0 1
w51 0 1 1 1 1 0 1 1
w53 1 1 1 1 1 0 0 1
w54 0 1 1 1 1 1 1 1
w55 0 1 1 1 1 0 0 1
w56 0 1 1 1 1 1 0 1
w57 0 1 1 1 1 1 0 1
w59 0 1 1 1 0 1 1 1
w60 0 1 1 1 1 0 1 1
w61 0 1 1 1 0 0 1 1
w62 0 0 0 0 0 0 1 0
w63 0 1 1 1 0 1 1 1
w64 0 1 1 1 1 1 0 1
w65 0 1 1 1 0 1 1 1
w66 0 1 1 1 0 1 1 1
w68 0 1 1 1 0 1 1 1
w69 0 1 1 1 0 1 1 1
w71 0 1 1 1 0 1 1 1
w72 0 1 1 1 0 1 1 1
w73 0 1 1 1 0 1 1 0
w74 0 1 1 1 0 0 0 1
w75 0 1 1 1 0 1 1 1
w76 0 0 0 0 0 0 0 0
w77 1 0 1 1 1 0 0 1
w78 1 0 1 1 1 0 0 1
w79 1 0 1 1 1 0 0 1
w80 1 0 1 1 1 0 0 1
w81 1 0 1 1 1 0 0 1
w82 1 0 1 1 1 1 1 0
w83 1 0 1 1 1 0 1 1
w84 1 0 1 1 1 0 0 1
w85 1 1 1 1 1 0 0 1
w86 1 0 1 1 1 0 0 1
w87 1 0 1 1 1 1 1 0
w89 1 0 1 1 1 1 0 1
w90 0 1 1 1 1 0 0 1
w91 1 0 1 1 1 0 0 1
w92 1 0 1 1 1 0 0 1
w93 1 1 1 0 1 0 0 1
w94 0 0 1 1 1 0 1 1
w95 1 0 1 1 1 0 0 1
w96 0 0 0 0 0 0 0 0
w98 1 0 1 1 1 1 0 1
x22 1 1 1 1 0 0 1 0
x23 1 1 1 1 0 0 1 0 ;
param ds default 0.000 (tr) :
18REG 24REG 24PRO :=
w01 0.000 0.000 0.008
w02 0.004 0.000 0.000
w03 0.000 0.000 0.000
w04 0.010 0.002 0.000
w05 0.000 0.000 0.000
w06 0.010 0.008 0.008
w08 0.030 0.024 0.024
w09 0.014 0.018 0.020
w12 0.014 0.012 0.010
w14 0.007 0.007 0.012
w15 0.010 0.019 0.018
w17 0.013 0.010 0.011
w19 0.015 0.012 0.009
w20 0.012 0.021 0.022
w21 0.000 0.000 0.000
w24 0.012 0.022 0.018
w25 0.019 0.025 0.020
w26 0.006 0.015 0.021
w27 0.008 0.010 0.015
w28 0.011 0.016 0.019
w29 0.008 0.020 0.013
w30 0.011 0.013 0.015
w31 0.011 0.013 0.017
w32 0.006 0.000 0.000
w33 0.000 0.015 0.014
w34 0.008 0.007 0.005
w35 0.002 0.006 0.014
w36 0.015 0.013 0.005
w37 0.017 0.016 0.015
w38 0.015 0.009 0.012
w39 0.007 0.017 0.022
w40 0.009 0.014 0.020
w41 0.003 0.014 0.011
w42 0.017 0.011 0.012
w43 0.009 0.013 0.011
w44 0.002 0.012 0.012
w45 0.016 0.025 0.028
w46 0.038 0.062 0.040
w47 0.007 0.010 0.010
w48 0.003 0.015 0.016
w49 0.005 0.016 0.017
w50 0.011 0.008 0.007
w51 0.010 0.022 0.021
w53 0.004 0.026 0.020
w54 0.020 0.017 0.025
w55 0.004 0.019 0.028
w56 0.004 0.010 0.008
w57 0.014 0.020 0.018
w59 0.012 0.006 0.007
w60 0.019 0.010 0.009
w61 0.028 0.010 0.012
w62 0.000 0.000 0.000
w63 0.070 0.027 0.037
w64 0.009 0.004 0.005
w65 0.022 0.015 0.016
w66 0.046 0.017 0.020
w68 0.005 0.012 0.016
w69 0.085 0.036 0.039
w71 0.011 0.013 0.010
w72 0.089 0.031 0.034
w75 0.026 0.012 0.010
w77 0.001 0.004 0.002
w78 0.002 0.004 0.002
w79 0.001 0.004 0.002
w80 0.001 0.001 0.002
w81 0.001 0.003 0.002
w83 0.009 0.010 0.008
w84 0.001 0.002 0.002
w85 0.001 0.004 0.005
w86 0.001 0.002 0.002
w87 0.002 0.003 0.000
w89 0.001 0.001 0.002
w90 0.006 0.017 0.013
w91 0.002 0.010 0.013
w92 0.000 0.003 0.002
w93 0.002 0.006 0.007
w95 0.001 0.007 0.007
w96 0.000 0.000 0.000
w98 0.006 0.005 0.002 ;
end;
|