1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505
|
/* lpx.c (old GLPK API) */
/* Written by Andrew Makhorin <mao@gnu.org>, August 2013. */
/* This file contains routines that implement the old GLPK API as it
* was defined in GLPK 4.48.
*
* To compile an existing project using these routines you need to add
* to the project this file and the header lpx.h.
*
* Please note that you may mix calls to old and new GLPK API routines
* (except calls to glp_create_prob and glp_delete_prob). */
#include <float.h>
#include <limits.h>
#include "lpx.h"
#define xassert glp_assert
#define xerror glp_error
struct CPS
{ /* control parameters */
LPX *lp;
/* pointer to corresponding problem object */
int msg_lev;
/* level of messages output by the solver:
0 - no output
1 - error messages only
2 - normal output
3 - full output (includes informational messages) */
int scale;
/* scaling option:
0 - no scaling
1 - equilibration scaling
2 - geometric mean scaling
3 - geometric mean scaling, then equilibration scaling */
int dual;
/* dual simplex option:
0 - use primal simplex
1 - use dual simplex */
int price;
/* pricing option (for both primal and dual simplex):
0 - textbook pricing
1 - steepest edge pricing */
double relax;
/* relaxation parameter used in the ratio test; if it is zero,
the textbook ratio test is used; if it is non-zero (should be
positive), Harris' two-pass ratio test is used; in the latter
case on the first pass basic variables (in the case of primal
simplex) or reduced costs of non-basic variables (in the case
of dual simplex) are allowed to slightly violate their bounds,
but not more than (relax * tol_bnd) or (relax * tol_dj) (thus,
relax is a percentage of tol_bnd or tol_dj) */
double tol_bnd;
/* relative tolerance used to check if the current basic solution
is primal feasible */
double tol_dj;
/* absolute tolerance used to check if the current basic solution
is dual feasible */
double tol_piv;
/* relative tolerance used to choose eligible pivotal elements of
the simplex table in the ratio test */
int round;
/* solution rounding option:
0 - report all computed values and reduced costs "as is"
1 - if possible (allowed by the tolerances), replace computed
values and reduced costs which are close to zero by exact
zeros */
double obj_ll;
/* lower limit of the objective function; if on the phase II the
objective function reaches this limit and continues decreasing,
the solver stops the search */
double obj_ul;
/* upper limit of the objective function; if on the phase II the
objective function reaches this limit and continues increasing,
the solver stops the search */
int it_lim;
/* simplex iterations limit; if this value is positive, it is
decreased by one each time when one simplex iteration has been
performed, and reaching zero value signals the solver to stop
the search; negative value means no iterations limit */
double tm_lim;
/* searching time limit, in seconds; if this value is positive,
it is decreased each time when one simplex iteration has been
performed by the amount of time spent for the iteration, and
reaching zero value signals the solver to stop the search;
negative value means no time limit */
int out_frq;
/* output frequency, in iterations; this parameter specifies how
frequently the solver sends information about the solution to
the standard output */
double out_dly;
/* output delay, in seconds; this parameter specifies how long
the solver should delay sending information about the solution
to the standard output; zero value means no delay */
int branch; /* MIP */
/* branching heuristic:
0 - branch on first variable
1 - branch on last variable
2 - branch using heuristic by Driebeck and Tomlin
3 - branch on most fractional variable */
int btrack; /* MIP */
/* backtracking heuristic:
0 - select most recent node (depth first search)
1 - select earliest node (breadth first search)
2 - select node using the best projection heuristic
3 - select node with best local bound */
double tol_int; /* MIP */
/* absolute tolerance used to check if the current basic solution
is integer feasible */
double tol_obj; /* MIP */
/* relative tolerance used to check if the value of the objective
function is not better than in the best known integer feasible
solution */
int mps_info; /* lpx_write_mps */
/* if this flag is set, the routine lpx_write_mps outputs several
comment cards that contains some information about the problem;
otherwise the routine outputs no comment cards */
int mps_obj; /* lpx_write_mps */
/* this parameter tells the routine lpx_write_mps how to output
the objective function row:
0 - never output objective function row
1 - always output objective function row
2 - output objective function row if and only if the problem
has no free rows */
int mps_orig; /* lpx_write_mps */
/* if this flag is set, the routine lpx_write_mps uses original
row and column symbolic names; otherwise the routine generates
plain names using ordinal numbers of rows and columns */
int mps_wide; /* lpx_write_mps */
/* if this flag is set, the routine lpx_write_mps uses all data
fields; otherwise the routine keeps fields 5 and 6 empty */
int mps_free; /* lpx_write_mps */
/* if this flag is set, the routine lpx_write_mps omits column
and vector names everytime if possible (free style); otherwise
the routine never omits these names (pedantic style) */
int mps_skip; /* lpx_write_mps */
/* if this flag is set, the routine lpx_write_mps skips empty
columns (i.e. which has no constraint coefficients); otherwise
the routine outputs all columns */
int lpt_orig; /* lpx_write_lpt */
/* if this flag is set, the routine lpx_write_lpt uses original
row and column symbolic names; otherwise the routine generates
plain names using ordinal numbers of rows and columns */
int presol; /* lpx_simplex */
/* LP presolver option:
0 - do not use LP presolver
1 - use LP presolver */
int binarize; /* lpx_intopt */
/* if this flag is set, the routine lpx_intopt replaces integer
columns by binary ones */
int use_cuts; /* lpx_intopt */
/* if this flag is set, the routine lpx_intopt tries generating
cutting planes:
LPX_C_COVER - mixed cover cuts
LPX_C_CLIQUE - clique cuts
LPX_C_GOMORY - Gomory's mixed integer cuts
LPX_C_ALL - all cuts */
double mip_gap; /* MIP */
/* relative MIP gap tolerance */
struct CPS *link;
/* pointer to CPS for another problem object */
};
static struct CPS *cps_ptr = NULL;
/* initial pointer to CPS linked list */
static struct CPS *find_cps(LPX *lp)
{ /* find CPS for specified problem object */
struct CPS *cps;
for (cps = cps_ptr; cps != NULL; cps = cps->link)
if (cps->lp == lp) break;
/* if cps is NULL (not found), the problem object was created
with glp_create_prob rather than with lpx_create_prob */
xassert(cps != NULL);
return cps;
}
static void reset_cps(struct CPS *cps)
{ /* reset control parameters to default values */
cps->msg_lev = 3;
cps->scale = 1;
cps->dual = 0;
cps->price = 1;
cps->relax = 0.07;
cps->tol_bnd = 1e-7;
cps->tol_dj = 1e-7;
cps->tol_piv = 1e-9;
cps->round = 0;
cps->obj_ll = -DBL_MAX;
cps->obj_ul = +DBL_MAX;
cps->it_lim = -1;
cps->tm_lim = -1.0;
cps->out_frq = 200;
cps->out_dly = 0.0;
cps->branch = 2;
cps->btrack = 3;
cps->tol_int = 1e-5;
cps->tol_obj = 1e-7;
cps->mps_info = 1;
cps->mps_obj = 2;
cps->mps_orig = 0;
cps->mps_wide = 1;
cps->mps_free = 0;
cps->mps_skip = 0;
cps->lpt_orig = 0;
cps->presol = 0;
cps->binarize = 0;
cps->use_cuts = 0;
cps->mip_gap = 0.0;
return;
}
LPX *lpx_create_prob(void)
{ /* create problem object */
LPX *lp;
struct CPS *cps;
lp = glp_create_prob();
cps = glp_alloc(1, sizeof(struct CPS));
cps->lp = lp;
reset_cps(cps);
cps->link = cps_ptr;
cps_ptr = cps;
return lp;
}
void lpx_set_prob_name(LPX *lp, const char *name)
{ /* assign (change) problem name */
glp_set_prob_name(lp, name);
return;
}
void lpx_set_obj_name(LPX *lp, const char *name)
{ /* assign (change) objective function name */
glp_set_obj_name(lp, name);
return;
}
void lpx_set_obj_dir(LPX *lp, int dir)
{ /* set (change) optimization direction flag */
glp_set_obj_dir(lp, dir - LPX_MIN + GLP_MIN);
return;
}
int lpx_add_rows(LPX *lp, int nrs)
{ /* add new rows to problem object */
return glp_add_rows(lp, nrs);
}
int lpx_add_cols(LPX *lp, int ncs)
{ /* add new columns to problem object */
return glp_add_cols(lp, ncs);
}
void lpx_set_row_name(LPX *lp, int i, const char *name)
{ /* assign (change) row name */
glp_set_row_name(lp, i, name);
return;
}
void lpx_set_col_name(LPX *lp, int j, const char *name)
{ /* assign (change) column name */
glp_set_col_name(lp, j, name);
return;
}
void lpx_set_row_bnds(LPX *lp, int i, int type, double lb, double ub)
{ /* set (change) row bounds */
glp_set_row_bnds(lp, i, type - LPX_FR + GLP_FR, lb, ub);
return;
}
void lpx_set_col_bnds(LPX *lp, int j, int type, double lb, double ub)
{ /* set (change) column bounds */
glp_set_col_bnds(lp, j, type - LPX_FR + GLP_FR, lb, ub);
return;
}
void lpx_set_obj_coef(glp_prob *lp, int j, double coef)
{ /* set (change) obj. coefficient or constant term */
glp_set_obj_coef(lp, j, coef);
return;
}
void lpx_set_mat_row(LPX *lp, int i, int len, const int ind[],
const double val[])
{ /* set (replace) row of the constraint matrix */
glp_set_mat_row(lp, i, len, ind, val);
return;
}
void lpx_set_mat_col(LPX *lp, int j, int len, const int ind[],
const double val[])
{ /* set (replace) column of the constraint matrix */
glp_set_mat_col(lp, j, len, ind, val);
return;
}
void lpx_load_matrix(LPX *lp, int ne, const int ia[], const int ja[],
const double ar[])
{ /* load (replace) the whole constraint matrix */
glp_load_matrix(lp, ne, ia, ja, ar);
return;
}
void lpx_del_rows(LPX *lp, int nrs, const int num[])
{ /* delete specified rows from problem object */
glp_del_rows(lp, nrs, num);
return;
}
void lpx_del_cols(LPX *lp, int ncs, const int num[])
{ /* delete specified columns from problem object */
glp_del_cols(lp, ncs, num);
return;
}
void lpx_delete_prob(LPX *lp)
{ /* delete problem object */
struct CPS *cps = find_cps(lp);
if (cps_ptr == cps)
cps_ptr = cps->link;
else
{ struct CPS *prev;
for (prev = cps_ptr; prev != NULL; prev = prev->link)
if (prev->link == cps) break;
xassert(prev != NULL);
prev->link = cps->link;
}
glp_free(cps);
glp_delete_prob(lp);
return;
}
const char *lpx_get_prob_name(LPX *lp)
{ /* retrieve problem name */
return glp_get_prob_name(lp);
}
const char *lpx_get_obj_name(LPX *lp)
{ /* retrieve objective function name */
return glp_get_obj_name(lp);
}
int lpx_get_obj_dir(LPX *lp)
{ /* retrieve optimization direction flag */
return glp_get_obj_dir(lp) - GLP_MIN + LPX_MIN;
}
int lpx_get_num_rows(LPX *lp)
{ /* retrieve number of rows */
return glp_get_num_rows(lp);
}
int lpx_get_num_cols(LPX *lp)
{ /* retrieve number of columns */
return glp_get_num_cols(lp);
}
const char *lpx_get_row_name(LPX *lp, int i)
{ /* retrieve row name */
return glp_get_row_name(lp, i);
}
const char *lpx_get_col_name(LPX *lp, int j)
{ /* retrieve column name */
return glp_get_col_name(lp, j);
}
int lpx_get_row_type(LPX *lp, int i)
{ /* retrieve row type */
return glp_get_row_type(lp, i) - GLP_FR + LPX_FR;
}
double lpx_get_row_lb(glp_prob *lp, int i)
{ /* retrieve row lower bound */
double lb;
lb = glp_get_row_lb(lp, i);
if (lb == -DBL_MAX) lb = 0.0;
return lb;
}
double lpx_get_row_ub(glp_prob *lp, int i)
{ /* retrieve row upper bound */
double ub;
ub = glp_get_row_ub(lp, i);
if (ub == +DBL_MAX) ub = 0.0;
return ub;
}
void lpx_get_row_bnds(glp_prob *lp, int i, int *typx, double *lb,
double *ub)
{ /* retrieve row bounds */
if (typx != NULL) *typx = lpx_get_row_type(lp, i);
if (lb != NULL) *lb = lpx_get_row_lb(lp, i);
if (ub != NULL) *ub = lpx_get_row_ub(lp, i);
return;
}
int lpx_get_col_type(LPX *lp, int j)
{ /* retrieve column type */
return glp_get_col_type(lp, j) - GLP_FR + LPX_FR;
}
double lpx_get_col_lb(glp_prob *lp, int j)
{ /* retrieve column lower bound */
double lb;
lb = glp_get_col_lb(lp, j);
if (lb == -DBL_MAX) lb = 0.0;
return lb;
}
double lpx_get_col_ub(glp_prob *lp, int j)
{ /* retrieve column upper bound */
double ub;
ub = glp_get_col_ub(lp, j);
if (ub == +DBL_MAX) ub = 0.0;
return ub;
}
void lpx_get_col_bnds(glp_prob *lp, int j, int *typx, double *lb,
double *ub)
{ /* retrieve column bounds */
if (typx != NULL) *typx = lpx_get_col_type(lp, j);
if (lb != NULL) *lb = lpx_get_col_lb(lp, j);
if (ub != NULL) *ub = lpx_get_col_ub(lp, j);
return;
}
double lpx_get_obj_coef(LPX *lp, int j)
{ /* retrieve obj. coefficient or constant term */
return glp_get_obj_coef(lp, j);
}
int lpx_get_num_nz(LPX *lp)
{ /* retrieve number of constraint coefficients */
return glp_get_num_nz(lp);
}
int lpx_get_mat_row(LPX *lp, int i, int ind[], double val[])
{ /* retrieve row of the constraint matrix */
return glp_get_mat_row(lp, i, ind, val);
}
int lpx_get_mat_col(LPX *lp, int j, int ind[], double val[])
{ /* retrieve column of the constraint matrix */
return glp_get_mat_col(lp, j, ind, val);
}
void lpx_create_index(LPX *lp)
{ /* create the name index */
glp_create_index(lp);
return;
}
int lpx_find_row(LPX *lp, const char *name)
{ /* find row by its name */
return glp_find_row(lp, name);
}
int lpx_find_col(LPX *lp, const char *name)
{ /* find column by its name */
return glp_find_col(lp, name);
}
void lpx_delete_index(LPX *lp)
{ /* delete the name index */
glp_delete_index(lp);
return;
}
void lpx_scale_prob(LPX *lp)
{ /* scale problem data */
switch (lpx_get_int_parm(lp, LPX_K_SCALE))
{ case 0:
/* no scaling */
glp_unscale_prob(lp);
break;
case 1:
/* equilibration scaling */
glp_scale_prob(lp, GLP_SF_EQ);
break;
case 2:
/* geometric mean scaling */
glp_scale_prob(lp, GLP_SF_GM);
break;
case 3:
/* geometric mean scaling, then equilibration scaling */
glp_scale_prob(lp, GLP_SF_GM | GLP_SF_EQ);
break;
default:
xassert(lp != lp);
}
return;
}
void lpx_unscale_prob(LPX *lp)
{ /* unscale problem data */
glp_unscale_prob(lp);
return;
}
void lpx_set_row_stat(LPX *lp, int i, int stat)
{ /* set (change) row status */
glp_set_row_stat(lp, i, stat - LPX_BS + GLP_BS);
return;
}
void lpx_set_col_stat(LPX *lp, int j, int stat)
{ /* set (change) column status */
glp_set_col_stat(lp, j, stat - LPX_BS + GLP_BS);
return;
}
void lpx_std_basis(LPX *lp)
{ /* construct standard initial LP basis */
glp_std_basis(lp);
return;
}
void lpx_adv_basis(LPX *lp)
{ /* construct advanced initial LP basis */
glp_adv_basis(lp, 0);
return;
}
void lpx_cpx_basis(LPX *lp)
{ /* construct Bixby's initial LP basis */
glp_cpx_basis(lp);
return;
}
static void fill_smcp(LPX *lp, glp_smcp *parm)
{ glp_init_smcp(parm);
switch (lpx_get_int_parm(lp, LPX_K_MSGLEV))
{ case 0: parm->msg_lev = GLP_MSG_OFF; break;
case 1: parm->msg_lev = GLP_MSG_ERR; break;
case 2: parm->msg_lev = GLP_MSG_ON; break;
case 3: parm->msg_lev = GLP_MSG_ALL; break;
default: xassert(lp != lp);
}
switch (lpx_get_int_parm(lp, LPX_K_DUAL))
{ case 0: parm->meth = GLP_PRIMAL; break;
case 1: parm->meth = GLP_DUAL; break;
default: xassert(lp != lp);
}
switch (lpx_get_int_parm(lp, LPX_K_PRICE))
{ case 0: parm->pricing = GLP_PT_STD; break;
case 1: parm->pricing = GLP_PT_PSE; break;
default: xassert(lp != lp);
}
if (lpx_get_real_parm(lp, LPX_K_RELAX) == 0.0)
parm->r_test = GLP_RT_STD;
else
parm->r_test = GLP_RT_HAR;
parm->tol_bnd = lpx_get_real_parm(lp, LPX_K_TOLBND);
parm->tol_dj = lpx_get_real_parm(lp, LPX_K_TOLDJ);
parm->tol_piv = lpx_get_real_parm(lp, LPX_K_TOLPIV);
parm->obj_ll = lpx_get_real_parm(lp, LPX_K_OBJLL);
parm->obj_ul = lpx_get_real_parm(lp, LPX_K_OBJUL);
if (lpx_get_int_parm(lp, LPX_K_ITLIM) < 0)
parm->it_lim = INT_MAX;
else
parm->it_lim = lpx_get_int_parm(lp, LPX_K_ITLIM);
if (lpx_get_real_parm(lp, LPX_K_TMLIM) < 0.0)
parm->tm_lim = INT_MAX;
else
parm->tm_lim =
(int)(1000.0 * lpx_get_real_parm(lp, LPX_K_TMLIM));
parm->out_frq = lpx_get_int_parm(lp, LPX_K_OUTFRQ);
parm->out_dly =
(int)(1000.0 * lpx_get_real_parm(lp, LPX_K_OUTDLY));
switch (lpx_get_int_parm(lp, LPX_K_PRESOL))
{ case 0: parm->presolve = GLP_OFF; break;
case 1: parm->presolve = GLP_ON; break;
default: xassert(lp != lp);
}
return;
}
int lpx_simplex(LPX *lp)
{ /* easy-to-use driver to the simplex method */
glp_smcp parm;
int ret;
fill_smcp(lp, &parm);
ret = glp_simplex(lp, &parm);
switch (ret)
{ case 0: ret = LPX_E_OK; break;
case GLP_EBADB:
case GLP_ESING:
case GLP_ECOND:
case GLP_EBOUND: ret = LPX_E_FAULT; break;
case GLP_EFAIL: ret = LPX_E_SING; break;
case GLP_EOBJLL: ret = LPX_E_OBJLL; break;
case GLP_EOBJUL: ret = LPX_E_OBJUL; break;
case GLP_EITLIM: ret = LPX_E_ITLIM; break;
case GLP_ETMLIM: ret = LPX_E_TMLIM; break;
case GLP_ENOPFS: ret = LPX_E_NOPFS; break;
case GLP_ENODFS: ret = LPX_E_NODFS; break;
default: xassert(ret != ret);
}
return ret;
}
int lpx_exact(LPX *lp)
{ /* easy-to-use driver to the exact simplex method */
glp_smcp parm;
int ret;
fill_smcp(lp, &parm);
ret = glp_exact(lp, &parm);
switch (ret)
{ case 0: ret = LPX_E_OK; break;
case GLP_EBADB:
case GLP_ESING:
case GLP_EBOUND:
case GLP_EFAIL: ret = LPX_E_FAULT; break;
case GLP_EITLIM: ret = LPX_E_ITLIM; break;
case GLP_ETMLIM: ret = LPX_E_TMLIM; break;
default: xassert(ret != ret);
}
return ret;
}
int lpx_get_status(glp_prob *lp)
{ /* retrieve generic status of basic solution */
int status;
switch (glp_get_status(lp))
{ case GLP_OPT: status = LPX_OPT; break;
case GLP_FEAS: status = LPX_FEAS; break;
case GLP_INFEAS: status = LPX_INFEAS; break;
case GLP_NOFEAS: status = LPX_NOFEAS; break;
case GLP_UNBND: status = LPX_UNBND; break;
case GLP_UNDEF: status = LPX_UNDEF; break;
default: xassert(lp != lp);
}
return status;
}
int lpx_get_prim_stat(glp_prob *lp)
{ /* retrieve status of primal basic solution */
return glp_get_prim_stat(lp) - GLP_UNDEF + LPX_P_UNDEF;
}
int lpx_get_dual_stat(glp_prob *lp)
{ /* retrieve status of dual basic solution */
return glp_get_dual_stat(lp) - GLP_UNDEF + LPX_D_UNDEF;
}
double lpx_get_obj_val(LPX *lp)
{ /* retrieve objective value (basic solution) */
return glp_get_obj_val(lp);
}
int lpx_get_row_stat(LPX *lp, int i)
{ /* retrieve row status (basic solution) */
return glp_get_row_stat(lp, i) - GLP_BS + LPX_BS;
}
double lpx_get_row_prim(LPX *lp, int i)
{ /* retrieve row primal value (basic solution) */
return glp_get_row_prim(lp, i);
}
double lpx_get_row_dual(LPX *lp, int i)
{ /* retrieve row dual value (basic solution) */
return glp_get_row_dual(lp, i);
}
void lpx_get_row_info(glp_prob *lp, int i, int *tagx, double *vx,
double *dx)
{ /* obtain row solution information */
if (tagx != NULL) *tagx = lpx_get_row_stat(lp, i);
if (vx != NULL) *vx = lpx_get_row_prim(lp, i);
if (dx != NULL) *dx = lpx_get_row_dual(lp, i);
return;
}
int lpx_get_col_stat(LPX *lp, int j)
{ /* retrieve column status (basic solution) */
return glp_get_col_stat(lp, j) - GLP_BS + LPX_BS;
}
double lpx_get_col_prim(LPX *lp, int j)
{ /* retrieve column primal value (basic solution) */
return glp_get_col_prim(lp, j);
}
double lpx_get_col_dual(glp_prob *lp, int j)
{ /* retrieve column dual value (basic solution) */
return glp_get_col_dual(lp, j);
}
void lpx_get_col_info(glp_prob *lp, int j, int *tagx, double *vx,
double *dx)
{ /* obtain column solution information */
if (tagx != NULL) *tagx = lpx_get_col_stat(lp, j);
if (vx != NULL) *vx = lpx_get_col_prim(lp, j);
if (dx != NULL) *dx = lpx_get_col_dual(lp, j);
return;
}
int lpx_get_ray_info(LPX *lp)
{ /* determine what causes primal unboundness */
return glp_get_unbnd_ray(lp);
}
void lpx_check_kkt(LPX *lp, int scaled, LPXKKT *kkt)
{ /* check Karush-Kuhn-Tucker conditions */
int m = glp_get_num_rows(lp);
int ae_ind, re_ind;
double ae_max, re_max;
xassert(scaled == scaled);
glp_check_kkt(lp, GLP_SOL, GLP_KKT_PE, &ae_max, &ae_ind, &re_max,
&re_ind);
kkt->pe_ae_max = ae_max;
kkt->pe_ae_row = ae_ind;
kkt->pe_re_max = re_max;
kkt->pe_re_row = re_ind;
if (re_max <= 1e-9)
kkt->pe_quality = 'H';
else if (re_max <= 1e-6)
kkt->pe_quality = 'M';
else if (re_max <= 1e-3)
kkt->pe_quality = 'L';
else
kkt->pe_quality = '?';
glp_check_kkt(lp, GLP_SOL, GLP_KKT_PB, &ae_max, &ae_ind, &re_max,
&re_ind);
kkt->pb_ae_max = ae_max;
kkt->pb_ae_ind = ae_ind;
kkt->pb_re_max = re_max;
kkt->pb_re_ind = re_ind;
if (re_max <= 1e-9)
kkt->pb_quality = 'H';
else if (re_max <= 1e-6)
kkt->pb_quality = 'M';
else if (re_max <= 1e-3)
kkt->pb_quality = 'L';
else
kkt->pb_quality = '?';
glp_check_kkt(lp, GLP_SOL, GLP_KKT_DE, &ae_max, &ae_ind, &re_max,
&re_ind);
kkt->de_ae_max = ae_max;
if (ae_ind == 0)
kkt->de_ae_col = 0;
else
kkt->de_ae_col = ae_ind - m;
kkt->de_re_max = re_max;
if (re_ind == 0)
kkt->de_re_col = 0;
else
kkt->de_re_col = ae_ind - m;
if (re_max <= 1e-9)
kkt->de_quality = 'H';
else if (re_max <= 1e-6)
kkt->de_quality = 'M';
else if (re_max <= 1e-3)
kkt->de_quality = 'L';
else
kkt->de_quality = '?';
glp_check_kkt(lp, GLP_SOL, GLP_KKT_DB, &ae_max, &ae_ind, &re_max,
&re_ind);
kkt->db_ae_max = ae_max;
kkt->db_ae_ind = ae_ind;
kkt->db_re_max = re_max;
kkt->db_re_ind = re_ind;
if (re_max <= 1e-9)
kkt->db_quality = 'H';
else if (re_max <= 1e-6)
kkt->db_quality = 'M';
else if (re_max <= 1e-3)
kkt->db_quality = 'L';
else
kkt->db_quality = '?';
kkt->cs_ae_max = 0.0, kkt->cs_ae_ind = 0;
kkt->cs_re_max = 0.0, kkt->cs_re_ind = 0;
kkt->cs_quality = 'H';
return;
}
int lpx_warm_up(LPX *lp)
{ /* "warm up" LP basis */
int ret;
ret = glp_warm_up(lp);
if (ret == 0)
ret = LPX_E_OK;
else if (ret == GLP_EBADB)
ret = LPX_E_BADB;
else if (ret == GLP_ESING)
ret = LPX_E_SING;
else if (ret == GLP_ECOND)
ret = LPX_E_SING;
else
xassert(ret != ret);
return ret;
}
int lpx_eval_tab_row(LPX *lp, int k, int ind[], double val[])
{ /* compute row of the simplex tableau */
return glp_eval_tab_row(lp, k, ind, val);
}
int lpx_eval_tab_col(LPX *lp, int k, int ind[], double val[])
{ /* compute column of the simplex tableau */
return glp_eval_tab_col(lp, k, ind, val);
}
int lpx_transform_row(LPX *lp, int len, int ind[], double val[])
{ /* transform explicitly specified row */
return glp_transform_row(lp, len, ind, val);
}
int lpx_transform_col(LPX *lp, int len, int ind[], double val[])
{ /* transform explicitly specified column */
return glp_transform_col(lp, len, ind, val);
}
int lpx_prim_ratio_test(LPX *lp, int len, const int ind[],
const double val[], int how, double tol)
{ /* perform primal ratio test */
int piv;
piv = glp_prim_rtest(lp, len, ind, val, how, tol);
xassert(0 <= piv && piv <= len);
return piv == 0 ? 0 : ind[piv];
}
int lpx_dual_ratio_test(LPX *lp, int len, const int ind[],
const double val[], int how, double tol)
{ /* perform dual ratio test */
int piv;
piv = glp_dual_rtest(lp, len, ind, val, how, tol);
xassert(0 <= piv && piv <= len);
return piv == 0 ? 0 : ind[piv];
}
int lpx_interior(LPX *lp)
{ /* easy-to-use driver to the interior-point method */
int ret;
ret = glp_interior(lp, NULL);
switch (ret)
{ case 0: ret = LPX_E_OK; break;
case GLP_EFAIL: ret = LPX_E_FAULT; break;
case GLP_ENOFEAS: ret = LPX_E_NOFEAS; break;
case GLP_ENOCVG: ret = LPX_E_NOCONV; break;
case GLP_EITLIM: ret = LPX_E_ITLIM; break;
case GLP_EINSTAB: ret = LPX_E_INSTAB; break;
default: xassert(ret != ret);
}
return ret;
}
int lpx_ipt_status(glp_prob *lp)
{ /* retrieve status of interior-point solution */
int status;
switch (glp_ipt_status(lp))
{ case GLP_UNDEF: status = LPX_T_UNDEF; break;
case GLP_OPT: status = LPX_T_OPT; break;
default: xassert(lp != lp);
}
return status;
}
double lpx_ipt_obj_val(LPX *lp)
{ /* retrieve objective value (interior point) */
return glp_ipt_obj_val(lp);
}
double lpx_ipt_row_prim(LPX *lp, int i)
{ /* retrieve row primal value (interior point) */
return glp_ipt_row_prim(lp, i);
}
double lpx_ipt_row_dual(LPX *lp, int i)
{ /* retrieve row dual value (interior point) */
return glp_ipt_row_dual(lp, i);
}
double lpx_ipt_col_prim(LPX *lp, int j)
{ /* retrieve column primal value (interior point) */
return glp_ipt_col_prim(lp, j);
}
double lpx_ipt_col_dual(LPX *lp, int j)
{ /* retrieve column dual value (interior point) */
return glp_ipt_col_dual(lp, j);
}
void lpx_set_class(LPX *lp, int klass)
{ /* set problem class */
xassert(lp == lp);
if (!(klass == LPX_LP || klass == LPX_MIP))
xerror("lpx_set_class: invalid problem class\n");
return;
}
int lpx_get_class(LPX *lp)
{ /* determine problem klass */
return glp_get_num_int(lp) == 0 ? LPX_LP : LPX_MIP;
}
void lpx_set_col_kind(LPX *lp, int j, int kind)
{ /* set (change) column kind */
glp_set_col_kind(lp, j, kind - LPX_CV + GLP_CV);
return;
}
int lpx_get_col_kind(LPX *lp, int j)
{ /* retrieve column kind */
return glp_get_col_kind(lp, j) == GLP_CV ? LPX_CV : LPX_IV;
}
int lpx_get_num_int(LPX *lp)
{ /* retrieve number of integer columns */
return glp_get_num_int(lp);
}
int lpx_get_num_bin(LPX *lp)
{ /* retrieve number of binary columns */
return glp_get_num_bin(lp);
}
static int solve_mip(LPX *lp, int presolve)
{ glp_iocp parm;
int ret;
glp_init_iocp(&parm);
switch (lpx_get_int_parm(lp, LPX_K_MSGLEV))
{ case 0: parm.msg_lev = GLP_MSG_OFF; break;
case 1: parm.msg_lev = GLP_MSG_ERR; break;
case 2: parm.msg_lev = GLP_MSG_ON; break;
case 3: parm.msg_lev = GLP_MSG_ALL; break;
default: xassert(lp != lp);
}
switch (lpx_get_int_parm(lp, LPX_K_BRANCH))
{ case 0: parm.br_tech = GLP_BR_FFV; break;
case 1: parm.br_tech = GLP_BR_LFV; break;
case 2: parm.br_tech = GLP_BR_DTH; break;
case 3: parm.br_tech = GLP_BR_MFV; break;
default: xassert(lp != lp);
}
switch (lpx_get_int_parm(lp, LPX_K_BTRACK))
{ case 0: parm.bt_tech = GLP_BT_DFS; break;
case 1: parm.bt_tech = GLP_BT_BFS; break;
case 2: parm.bt_tech = GLP_BT_BPH; break;
case 3: parm.bt_tech = GLP_BT_BLB; break;
default: xassert(lp != lp);
}
parm.tol_int = lpx_get_real_parm(lp, LPX_K_TOLINT);
parm.tol_obj = lpx_get_real_parm(lp, LPX_K_TOLOBJ);
if (lpx_get_real_parm(lp, LPX_K_TMLIM) < 0.0 ||
lpx_get_real_parm(lp, LPX_K_TMLIM) > 1e6)
parm.tm_lim = INT_MAX;
else
parm.tm_lim =
(int)(1000.0 * lpx_get_real_parm(lp, LPX_K_TMLIM));
parm.mip_gap = lpx_get_real_parm(lp, LPX_K_MIPGAP);
if (lpx_get_int_parm(lp, LPX_K_USECUTS) & LPX_C_GOMORY)
parm.gmi_cuts = GLP_ON;
else
parm.gmi_cuts = GLP_OFF;
if (lpx_get_int_parm(lp, LPX_K_USECUTS) & LPX_C_MIR)
parm.mir_cuts = GLP_ON;
else
parm.mir_cuts = GLP_OFF;
if (lpx_get_int_parm(lp, LPX_K_USECUTS) & LPX_C_COVER)
parm.cov_cuts = GLP_ON;
else
parm.cov_cuts = GLP_OFF;
if (lpx_get_int_parm(lp, LPX_K_USECUTS) & LPX_C_CLIQUE)
parm.clq_cuts = GLP_ON;
else
parm.clq_cuts = GLP_OFF;
parm.presolve = presolve;
if (lpx_get_int_parm(lp, LPX_K_BINARIZE))
parm.binarize = GLP_ON;
ret = glp_intopt(lp, &parm);
switch (ret)
{ case 0: ret = LPX_E_OK; break;
case GLP_ENOPFS: ret = LPX_E_NOPFS; break;
case GLP_ENODFS: ret = LPX_E_NODFS; break;
case GLP_EBOUND:
case GLP_EROOT: ret = LPX_E_FAULT; break;
case GLP_EFAIL: ret = LPX_E_SING; break;
case GLP_EMIPGAP: ret = LPX_E_MIPGAP; break;
case GLP_ETMLIM: ret = LPX_E_TMLIM; break;
default: xassert(ret != ret);
}
return ret;
}
int lpx_integer(LPX *lp)
{ /* easy-to-use driver to the branch-and-bound method */
return solve_mip(lp, GLP_OFF);
}
int lpx_intopt(LPX *lp)
{ /* easy-to-use driver to the branch-and-bound method */
return solve_mip(lp, GLP_ON);
}
int lpx_mip_status(glp_prob *lp)
{ /* retrieve status of MIP solution */
int status;
switch (glp_mip_status(lp))
{ case GLP_UNDEF: status = LPX_I_UNDEF; break;
case GLP_OPT: status = LPX_I_OPT; break;
case GLP_FEAS: status = LPX_I_FEAS; break;
case GLP_NOFEAS: status = LPX_I_NOFEAS; break;
default: xassert(lp != lp);
}
return status;
}
double lpx_mip_obj_val(LPX *lp)
{ /* retrieve objective value (MIP solution) */
return glp_mip_obj_val(lp);
}
double lpx_mip_row_val(LPX *lp, int i)
{ /* retrieve row value (MIP solution) */
return glp_mip_row_val(lp, i);
}
double lpx_mip_col_val(LPX *lp, int j)
{ /* retrieve column value (MIP solution) */
return glp_mip_col_val(lp, j);
}
void lpx_check_int(LPX *lp, LPXKKT *kkt)
{ /* check integer feasibility conditions */
int ae_ind, re_ind;
double ae_max, re_max;
glp_check_kkt(lp, GLP_MIP, GLP_KKT_PE, &ae_max, &ae_ind, &re_max,
&re_ind);
kkt->pe_ae_max = ae_max;
kkt->pe_ae_row = ae_ind;
kkt->pe_re_max = re_max;
kkt->pe_re_row = re_ind;
if (re_max <= 1e-9)
kkt->pe_quality = 'H';
else if (re_max <= 1e-6)
kkt->pe_quality = 'M';
else if (re_max <= 1e-3)
kkt->pe_quality = 'L';
else
kkt->pe_quality = '?';
glp_check_kkt(lp, GLP_MIP, GLP_KKT_PB, &ae_max, &ae_ind, &re_max,
&re_ind);
kkt->pb_ae_max = ae_max;
kkt->pb_ae_ind = ae_ind;
kkt->pb_re_max = re_max;
kkt->pb_re_ind = re_ind;
if (re_max <= 1e-9)
kkt->pb_quality = 'H';
else if (re_max <= 1e-6)
kkt->pb_quality = 'M';
else if (re_max <= 1e-3)
kkt->pb_quality = 'L';
else
kkt->pb_quality = '?';
return;
}
void lpx_reset_parms(LPX *lp)
{ /* reset control parameters to default values */
struct CPS *cps = find_cps(lp);
reset_cps(cps);
return;
}
void lpx_set_int_parm(LPX *lp, int parm, int val)
{ /* set (change) integer control parameter */
struct CPS *cps = find_cps(lp);
switch (parm)
{ case LPX_K_MSGLEV:
if (!(0 <= val && val <= 3))
xerror("lpx_set_int_parm: MSGLEV = %d; invalid value\n",
val);
cps->msg_lev = val;
break;
case LPX_K_SCALE:
if (!(0 <= val && val <= 3))
xerror("lpx_set_int_parm: SCALE = %d; invalid value\n",
val);
cps->scale = val;
break;
case LPX_K_DUAL:
if (!(val == 0 || val == 1))
xerror("lpx_set_int_parm: DUAL = %d; invalid value\n",
val);
cps->dual = val;
break;
case LPX_K_PRICE:
if (!(val == 0 || val == 1))
xerror("lpx_set_int_parm: PRICE = %d; invalid value\n",
val);
cps->price = val;
break;
case LPX_K_ROUND:
if (!(val == 0 || val == 1))
xerror("lpx_set_int_parm: ROUND = %d; invalid value\n",
val);
cps->round = val;
break;
case LPX_K_ITLIM:
cps->it_lim = val;
break;
case LPX_K_ITCNT:
glp_set_it_cnt(lp, val);
break;
case LPX_K_OUTFRQ:
if (!(val > 0))
xerror("lpx_set_int_parm: OUTFRQ = %d; invalid value\n",
val);
cps->out_frq = val;
break;
case LPX_K_BRANCH:
if (!(val == 0 || val == 1 || val == 2 || val == 3))
xerror("lpx_set_int_parm: BRANCH = %d; invalid value\n",
val);
cps->branch = val;
break;
case LPX_K_BTRACK:
if (!(val == 0 || val == 1 || val == 2 || val == 3))
xerror("lpx_set_int_parm: BTRACK = %d; invalid value\n",
val);
cps->btrack = val;
break;
case LPX_K_MPSINFO:
if (!(val == 0 || val == 1))
xerror("lpx_set_int_parm: MPSINFO = %d; invalid value\n",
val);
cps->mps_info = val;
break;
case LPX_K_MPSOBJ:
if (!(val == 0 || val == 1 || val == 2))
xerror("lpx_set_int_parm: MPSOBJ = %d; invalid value\n",
val);
cps->mps_obj = val;
break;
case LPX_K_MPSORIG:
if (!(val == 0 || val == 1))
xerror("lpx_set_int_parm: MPSORIG = %d; invalid value\n",
val);
cps->mps_orig = val;
break;
case LPX_K_MPSWIDE:
if (!(val == 0 || val == 1))
xerror("lpx_set_int_parm: MPSWIDE = %d; invalid value\n",
val);
cps->mps_wide = val;
break;
case LPX_K_MPSFREE:
if (!(val == 0 || val == 1))
xerror("lpx_set_int_parm: MPSFREE = %d; invalid value\n",
val);
cps->mps_free = val;
break;
case LPX_K_MPSSKIP:
if (!(val == 0 || val == 1))
xerror("lpx_set_int_parm: MPSSKIP = %d; invalid value\n",
val);
cps->mps_skip = val;
break;
case LPX_K_LPTORIG:
if (!(val == 0 || val == 1))
xerror("lpx_set_int_parm: LPTORIG = %d; invalid value\n",
val);
cps->lpt_orig = val;
break;
case LPX_K_PRESOL:
if (!(val == 0 || val == 1))
xerror("lpx_set_int_parm: PRESOL = %d; invalid value\n",
val);
cps->presol = val;
break;
case LPX_K_BINARIZE:
if (!(val == 0 || val == 1))
xerror("lpx_set_int_parm: BINARIZE = %d; invalid value\n"
, val);
cps->binarize = val;
break;
case LPX_K_USECUTS:
if (val & ~LPX_C_ALL)
xerror("lpx_set_int_parm: USECUTS = 0x%X; invalid value\n",
val);
cps->use_cuts = val;
break;
case LPX_K_BFTYPE:
{ glp_bfcp parm;
glp_get_bfcp(lp, &parm);
switch (val)
{ case 1:
parm.type = GLP_BF_FT; break;
case 2:
parm.type = GLP_BF_BG; break;
case 3:
parm.type = GLP_BF_GR; break;
default:
xerror("lpx_set_int_parm: BFTYPE = %d; invalid val"
"ue\n", val);
}
glp_set_bfcp(lp, &parm);
}
break;
default:
xerror("lpx_set_int_parm: parm = %d; invalid parameter\n",
parm);
}
return;
}
int lpx_get_int_parm(LPX *lp, int parm)
{ /* query integer control parameter */
struct CPS *cps = find_cps(lp);
int val = 0;
switch (parm)
{ case LPX_K_MSGLEV:
val = cps->msg_lev; break;
case LPX_K_SCALE:
val = cps->scale; break;
case LPX_K_DUAL:
val = cps->dual; break;
case LPX_K_PRICE:
val = cps->price; break;
case LPX_K_ROUND:
val = cps->round; break;
case LPX_K_ITLIM:
val = cps->it_lim; break;
case LPX_K_ITCNT:
val = glp_get_it_cnt(lp); break;
case LPX_K_OUTFRQ:
val = cps->out_frq; break;
case LPX_K_BRANCH:
val = cps->branch; break;
case LPX_K_BTRACK:
val = cps->btrack; break;
case LPX_K_MPSINFO:
val = cps->mps_info; break;
case LPX_K_MPSOBJ:
val = cps->mps_obj; break;
case LPX_K_MPSORIG:
val = cps->mps_orig; break;
case LPX_K_MPSWIDE:
val = cps->mps_wide; break;
case LPX_K_MPSFREE:
val = cps->mps_free; break;
case LPX_K_MPSSKIP:
val = cps->mps_skip; break;
case LPX_K_LPTORIG:
val = cps->lpt_orig; break;
case LPX_K_PRESOL:
val = cps->presol; break;
case LPX_K_BINARIZE:
val = cps->binarize; break;
case LPX_K_USECUTS:
val = cps->use_cuts; break;
case LPX_K_BFTYPE:
{ glp_bfcp parm;
glp_get_bfcp(lp, &parm);
switch (parm.type)
{ case GLP_BF_FT:
val = 1; break;
case GLP_BF_BG:
val = 2; break;
case GLP_BF_GR:
val = 3; break;
default:
xassert(lp != lp);
}
}
break;
default:
xerror("lpx_get_int_parm: parm = %d; invalid parameter\n",
parm);
}
return val;
}
void lpx_set_real_parm(LPX *lp, int parm, double val)
{ /* set (change) real control parameter */
struct CPS *cps = find_cps(lp);
switch (parm)
{ case LPX_K_RELAX:
if (!(0.0 <= val && val <= 1.0))
xerror("lpx_set_real_parm: RELAX = %g; invalid value\n",
val);
cps->relax = val;
break;
case LPX_K_TOLBND:
if (!(DBL_EPSILON <= val && val <= 0.001))
xerror("lpx_set_real_parm: TOLBND = %g; invalid value\n",
val);
cps->tol_bnd = val;
break;
case LPX_K_TOLDJ:
if (!(DBL_EPSILON <= val && val <= 0.001))
xerror("lpx_set_real_parm: TOLDJ = %g; invalid value\n",
val);
cps->tol_dj = val;
break;
case LPX_K_TOLPIV:
if (!(DBL_EPSILON <= val && val <= 0.001))
xerror("lpx_set_real_parm: TOLPIV = %g; invalid value\n",
val);
cps->tol_piv = val;
break;
case LPX_K_OBJLL:
cps->obj_ll = val;
break;
case LPX_K_OBJUL:
cps->obj_ul = val;
break;
case LPX_K_TMLIM:
cps->tm_lim = val;
break;
case LPX_K_OUTDLY:
cps->out_dly = val;
break;
case LPX_K_TOLINT:
if (!(DBL_EPSILON <= val && val <= 0.001))
xerror("lpx_set_real_parm: TOLINT = %g; invalid value\n",
val);
cps->tol_int = val;
break;
case LPX_K_TOLOBJ:
if (!(DBL_EPSILON <= val && val <= 0.001))
xerror("lpx_set_real_parm: TOLOBJ = %g; invalid value\n",
val);
cps->tol_obj = val;
break;
case LPX_K_MIPGAP:
if (val < 0.0)
xerror("lpx_set_real_parm: MIPGAP = %g; invalid value\n",
val);
cps->mip_gap = val;
break;
default:
xerror("lpx_set_real_parm: parm = %d; invalid parameter\n",
parm);
}
return;
}
double lpx_get_real_parm(LPX *lp, int parm)
{ /* query real control parameter */
struct CPS *cps = find_cps(lp);
double val = 0.0;
switch (parm)
{ case LPX_K_RELAX:
val = cps->relax;
break;
case LPX_K_TOLBND:
val = cps->tol_bnd;
break;
case LPX_K_TOLDJ:
val = cps->tol_dj;
break;
case LPX_K_TOLPIV:
val = cps->tol_piv;
break;
case LPX_K_OBJLL:
val = cps->obj_ll;
break;
case LPX_K_OBJUL:
val = cps->obj_ul;
break;
case LPX_K_TMLIM:
val = cps->tm_lim;
break;
case LPX_K_OUTDLY:
val = cps->out_dly;
break;
case LPX_K_TOLINT:
val = cps->tol_int;
break;
case LPX_K_TOLOBJ:
val = cps->tol_obj;
break;
case LPX_K_MIPGAP:
val = cps->mip_gap;
break;
default:
xerror("lpx_get_real_parm: parm = %d; invalid parameter\n",
parm);
}
return val;
}
LPX *lpx_read_mps(const char *fname)
{ /* read problem data in fixed MPS format */
LPX *lp = lpx_create_prob();
if (glp_read_mps(lp, GLP_MPS_DECK, NULL, fname))
lpx_delete_prob(lp), lp = NULL;
return lp;
}
int lpx_write_mps(LPX *lp, const char *fname)
{ /* write problem data in fixed MPS format */
return glp_write_mps(lp, GLP_MPS_DECK, NULL, fname);
}
int lpx_read_bas(LPX *lp, const char *fname)
{ /* read LP basis in fixed MPS format */
xassert(lp == lp);
xassert(fname == fname);
xerror("lpx_read_bas: operation not supported\n");
return 0;
}
int lpx_write_bas(LPX *lp, const char *fname)
{ /* write LP basis in fixed MPS format */
xassert(lp == lp);
xassert(fname == fname);
xerror("lpx_write_bas: operation not supported\n");
return 0;
}
LPX *lpx_read_freemps(const char *fname)
{ /* read problem data in free MPS format */
LPX *lp = lpx_create_prob();
if (glp_read_mps(lp, GLP_MPS_FILE, NULL, fname))
lpx_delete_prob(lp), lp = NULL;
return lp;
}
int lpx_write_freemps(LPX *lp, const char *fname)
{ /* write problem data in free MPS format */
return glp_write_mps(lp, GLP_MPS_FILE, NULL, fname);
}
LPX *lpx_read_cpxlp(const char *fname)
{ /* read problem data in CPLEX LP format */
LPX *lp;
lp = lpx_create_prob();
if (glp_read_lp(lp, NULL, fname))
lpx_delete_prob(lp), lp = NULL;
return lp;
}
int lpx_write_cpxlp(LPX *lp, const char *fname)
{ /* write problem data in CPLEX LP format */
return glp_write_lp(lp, NULL, fname);
}
LPX *lpx_read_model(const char *model, const char *data, const char
*output)
{ /* read LP/MIP model written in GNU MathProg language */
LPX *lp = NULL;
glp_tran *tran;
/* allocate the translator workspace */
tran = glp_mpl_alloc_wksp();
/* read model section and optional data section */
if (glp_mpl_read_model(tran, model, data != NULL)) goto done;
/* read separate data section, if required */
if (data != NULL)
if (glp_mpl_read_data(tran, data)) goto done;
/* generate the model */
if (glp_mpl_generate(tran, output)) goto done;
/* build the problem instance from the model */
lp = lpx_create_prob();
glp_mpl_build_prob(tran, lp);
done: /* free the translator workspace */
glp_mpl_free_wksp(tran);
/* bring the problem object to the calling program */
return lp;
}
int lpx_print_prob(LPX *lp, const char *fname)
{ /* write problem data in plain text format */
return glp_write_lp(lp, NULL, fname);
}
int lpx_print_sol(LPX *lp, const char *fname)
{ /* write LP problem solution in printable format */
return glp_print_sol(lp, fname);
}
int lpx_print_sens_bnds(LPX *lp, const char *fname)
{ /* write bounds sensitivity information */
if (glp_get_status(lp) == GLP_OPT && !glp_bf_exists(lp))
glp_factorize(lp);
return glp_print_ranges(lp, 0, NULL, 0, fname);
}
int lpx_print_ips(LPX *lp, const char *fname)
{ /* write interior point solution in printable format */
return glp_print_ipt(lp, fname);
}
int lpx_print_mip(LPX *lp, const char *fname)
{ /* write MIP problem solution in printable format */
return glp_print_mip(lp, fname);
}
int lpx_is_b_avail(glp_prob *lp)
{ /* check if LP basis is available */
return glp_bf_exists(lp);
}
int lpx_main(int argc, const char *argv[])
{ /* stand-alone LP/MIP solver */
return glp_main(argc, argv);
}
/* eof */
|