1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201
|
/* SAT, Satisfiability Problem */
/* Written in GNU MathProg by Andrew Makhorin <mao@gnu.org> */
param m, integer, > 0;
/* number of clauses */
param n, integer, > 0;
/* number of variables */
set C{1..m};
/* clauses; each clause C[i], i = 1, ..., m, is disjunction of some
variables or their negations; in the data section each clause is
coded as a set of indices of corresponding variables, where negative
indices mean negation; for example, the clause (x3 or not x7 or x11)
is coded as the set { 3, -7, 11 } */
var x{1..n}, binary;
/* main variables */
/* To solve the satisfiability problem means to determine all variables
x[j] such that conjunction of all clauses C[1] and ... and C[m] takes
on the value true, i.e. all clauses are satisfied.
Let the clause C[i] be (t or t' or ... or t''), where t, t', ..., t''
are either variables or their negations. The condition of satisfying
C[i] can be most naturally written as:
t + t' + ... + t'' >= 1, (1)
where t, t', t'' have to be replaced by either x[j] or (1 - x[j]).
The formulation (1) leads to the mip problem with no objective, i.e.
to a feasibility problem.
Another, more practical way is to write the condition for C[i] as:
t + t' + ... + t'' + y[i] >= 1, (2)
where y[i] is an auxiliary binary variable, and minimize the sum of
y[i]. If the sum is zero, all y[i] are also zero, and therefore all
clauses are satisfied. If the sum is minimal but non-zero, its value
shows the number of clauses which cannot be satisfied. */
var y{1..m}, binary, >= 0;
/* auxiliary variables */
s.t. c{i in 1..m}:
sum{j in C[i]} (if j > 0 then x[j] else (1 - x[-j])) + y[i] >= 1;
/* the condition (2) */
minimize unsat: sum{i in 1..m} y[i];
/* number of unsatisfied clauses */
data;
/* These data correspond to the instance hole6 (pigeon hole problem for
6 holes) from SATLIB, the Satisfiability Library, which is part of
the collection at the Forschungsinstitut fuer anwendungsorientierte
Wissensverarbeitung in Ulm Germany */
/* The optimal solution is 1 (one clause cannot be satisfied) */
param m := 133;
param n := 42;
set C[1] := -1 -7;
set C[2] := -1 -13;
set C[3] := -1 -19;
set C[4] := -1 -25;
set C[5] := -1 -31;
set C[6] := -1 -37;
set C[7] := -7 -13;
set C[8] := -7 -19;
set C[9] := -7 -25;
set C[10] := -7 -31;
set C[11] := -7 -37;
set C[12] := -13 -19;
set C[13] := -13 -25;
set C[14] := -13 -31;
set C[15] := -13 -37;
set C[16] := -19 -25;
set C[17] := -19 -31;
set C[18] := -19 -37;
set C[19] := -25 -31;
set C[20] := -25 -37;
set C[21] := -31 -37;
set C[22] := -2 -8;
set C[23] := -2 -14;
set C[24] := -2 -20;
set C[25] := -2 -26;
set C[26] := -2 -32;
set C[27] := -2 -38;
set C[28] := -8 -14;
set C[29] := -8 -20;
set C[30] := -8 -26;
set C[31] := -8 -32;
set C[32] := -8 -38;
set C[33] := -14 -20;
set C[34] := -14 -26;
set C[35] := -14 -32;
set C[36] := -14 -38;
set C[37] := -20 -26;
set C[38] := -20 -32;
set C[39] := -20 -38;
set C[40] := -26 -32;
set C[41] := -26 -38;
set C[42] := -32 -38;
set C[43] := -3 -9;
set C[44] := -3 -15;
set C[45] := -3 -21;
set C[46] := -3 -27;
set C[47] := -3 -33;
set C[48] := -3 -39;
set C[49] := -9 -15;
set C[50] := -9 -21;
set C[51] := -9 -27;
set C[52] := -9 -33;
set C[53] := -9 -39;
set C[54] := -15 -21;
set C[55] := -15 -27;
set C[56] := -15 -33;
set C[57] := -15 -39;
set C[58] := -21 -27;
set C[59] := -21 -33;
set C[60] := -21 -39;
set C[61] := -27 -33;
set C[62] := -27 -39;
set C[63] := -33 -39;
set C[64] := -4 -10;
set C[65] := -4 -16;
set C[66] := -4 -22;
set C[67] := -4 -28;
set C[68] := -4 -34;
set C[69] := -4 -40;
set C[70] := -10 -16;
set C[71] := -10 -22;
set C[72] := -10 -28;
set C[73] := -10 -34;
set C[74] := -10 -40;
set C[75] := -16 -22;
set C[76] := -16 -28;
set C[77] := -16 -34;
set C[78] := -16 -40;
set C[79] := -22 -28;
set C[80] := -22 -34;
set C[81] := -22 -40;
set C[82] := -28 -34;
set C[83] := -28 -40;
set C[84] := -34 -40;
set C[85] := -5 -11;
set C[86] := -5 -17;
set C[87] := -5 -23;
set C[88] := -5 -29;
set C[89] := -5 -35;
set C[90] := -5 -41;
set C[91] := -11 -17;
set C[92] := -11 -23;
set C[93] := -11 -29;
set C[94] := -11 -35;
set C[95] := -11 -41;
set C[96] := -17 -23;
set C[97] := -17 -29;
set C[98] := -17 -35;
set C[99] := -17 -41;
set C[100] := -23 -29;
set C[101] := -23 -35;
set C[102] := -23 -41;
set C[103] := -29 -35;
set C[104] := -29 -41;
set C[105] := -35 -41;
set C[106] := -6 -12;
set C[107] := -6 -18;
set C[108] := -6 -24;
set C[109] := -6 -30;
set C[110] := -6 -36;
set C[111] := -6 -42;
set C[112] := -12 -18;
set C[113] := -12 -24;
set C[114] := -12 -30;
set C[115] := -12 -36;
set C[116] := -12 -42;
set C[117] := -18 -24;
set C[118] := -18 -30;
set C[119] := -18 -36;
set C[120] := -18 -42;
set C[121] := -24 -30;
set C[122] := -24 -36;
set C[123] := -24 -42;
set C[124] := -30 -36;
set C[125] := -30 -42;
set C[126] := -36 -42;
set C[127] := 6 5 4 3 2 1;
set C[128] := 12 11 10 9 8 7;
set C[129] := 18 17 16 15 14 13;
set C[130] := 24 23 22 21 20 19;
set C[131] := 30 29 28 27 26 25;
set C[132] := 36 35 34 33 32 31;
set C[133] := 42 41 40 39 38 37;
end;
|