1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
# TRAIN, a model of railroad passenger car allocation
#
# References:
# Robert Fourer, David M. Gay and Brian W. Kernighan, "A Modeling Language
# for Mathematical Programming." Management Science 36 (1990) 519-554.
### SCHEDULE SETS AND PARAMETERS ###
set cities;
set links within {c1 in cities, c2 in cities: c1 <> c2};
# Set of cities, and set of intercity links
param last > 0 integer; # Number of time intervals in a day
set times := 1..last; # Set of time intervals in a day
set schedule within
{c1 in cities, t1 in times,
c2 in cities, t2 in times: (c1,c2) in links};
# Member (c1,t1,c2,t2) of this set represents
# a train that leaves city c1 at time t1
# and arrives in city c2 at time t2
### DEMAND PARAMETERS ###
param section > 0 integer;
# Maximum number of cars in one section of a train
param demand {schedule} > 0;
# For each scheduled train:
# the smallest number of cars that
# can meet demand for the train
param low {(c1,t1,c2,t2) in schedule} := ceil(demand[c1,t1,c2,t2]);
# Minimum number of cars needed to meet demand
param high {(c1,t1,c2,t2) in schedule}
:= max (2, min (ceil(2*demand[c1,t1,c2,t2]),
section*ceil(demand[c1,t1,c2,t2]/section) ));
# Maximum number of cars allowed on a train:
# 2 if demand is for less than one car;
# otherwise, lesser of
# number of cars needed to hold twice the demand, and
# number of cars in minimum number of sections needed
### DISTANCE PARAMETERS ###
param dist_table {links} >= 0 default 0.0;
param distance {(c1,c2) in links} > 0
:= if dist_table[c1,c2] > 0 then dist_table[c1,c2] else dist_table[c2,c1];
# Inter-city distances: distance[c1,c2] is miles
# between city c1 and city c2
### VARIABLES ###
var U 'cars stored' {cities,times} >= 0;
# u[c,t] is the number of unused cars stored
# at city c in the interval beginning at time t
var X 'cars in train' {schedule} >= 0;
# x[c1,t1,c2,t2] is the number of cars assigned to
# the scheduled train that leaves c1 at t1 and
# arrives in c2 at t2
### OBJECTIVES ###
minimize cars:
sum {c in cities} U[c,last] +
sum {(c1,t1,c2,t2) in schedule: t2 < t1} X[c1,t1,c2,t2];
# Number of cars in the system:
# sum of unused cars and cars in trains during
# the last time interval of the day
minimize miles:
sum {(c1,t1,c2,t2) in schedule} distance[c1,c2] * X[c1,t1,c2,t2];
# Total car-miles run by all scheduled trains in a day
### CONSTRAINTS ###
account {c in cities, t in times}:
U[c,t] = U[c, if t > 1 then t-1 else last] +
sum {(c1,t1,c,t) in schedule} X[c1,t1,c,t] -
sum {(c,t,c2,t2) in schedule} X[c,t,c2,t2];
# For every city and time:
# unused cars in the present interval must equal
# unused cars in the previous interval,
# plus cars just arriving in trains,
# minus cars just leaving in trains
satisfy {(c1,t1,c2,t2) in schedule}:
low[c1,t1,c2,t2] <= X[c1,t1,c2,t2] <= high[c1,t1,c2,t2];
# For each scheduled train:
# number of cars must meet demand,
# but must not be so great that unnecessary
# sections are run
### DATA ###
data;
set cities := BO NY PH WA ;
set links := (BO,NY) (NY,PH) (PH,WA)
(NY,BO) (PH,NY) (WA,PH) ;
param dist_table := [*,*] BO NY 232
NY PH 90
PH WA 135 ;
param last := 48 ;
param section := 14 ;
set schedule :=
(WA,*,PH,*) 2 5 6 9 8 11 10 13
12 15 13 16 14 17 15 18
16 19 17 20 18 21 19 22
20 23 21 24 22 25 23 26
24 27 25 28 26 29 27 30
28 31 29 32 30 33 31 34
32 35 33 36 34 37 35 38
36 39 37 40 38 41 39 42
40 43 41 44 42 45 44 47
46 1
(PH,*,NY,*) 1 3 5 7 9 11 11 13
13 15 14 16 15 17 16 18
17 19 18 20 19 21 20 22
21 23 22 24 23 25 24 26
25 27 26 28 27 29 28 30
29 31 30 32 31 33 32 34
33 35 34 36 35 37 36 38
37 39 38 40 39 41 40 42
41 43 42 44 43 45 44 46
45 47 47 1
(NY,*,BO,*) 10 16 12 18 14 20 15 21
16 22 17 23 18 24 19 25
20 26 21 27 22 28 23 29
24 30 25 31 26 32 27 33
28 34 29 35 30 36 31 37
32 38 33 39 34 40 35 41
36 42 37 43 38 44 39 45
40 46 41 47 42 48 43 1
44 2 45 3 46 4 48 6
(BO,*,NY,*) 7 13 9 15 11 17 12 18
13 19 14 20 15 21 16 22
17 23 18 24 19 25 20 26
21 27 22 28 23 29 24 30
25 31 26 32 27 33 28 34
29 35 30 36 31 37 32 38
33 39 34 40 35 41 36 42
37 43 38 44 39 45 40 46
41 47 43 1 45 3 47 5
(NY,*,PH,*) 1 3 12 14 13 15 14 16
15 17 16 18 17 19 18 20
19 21 20 22 21 23 22 24
23 25 24 26 25 27 26 28
27 29 28 30 29 31 30 32
31 33 32 34 33 35 34 36
35 37 36 38 37 39 38 40
39 41 40 42 41 43 42 44
43 45 44 46 45 47 46 48
47 1
(PH,*,WA,*) 1 4 14 17 15 18 16 19
17 20 18 21 19 22 20 23
21 24 22 25 23 26 24 27
25 28 26 29 27 30 28 31
29 32 30 33 31 34 32 35
33 36 34 37 35 38 36 39
37 40 38 41 39 42 40 43
41 44 42 45 43 46 44 47
45 48 46 1 47 2 ;
param demand :=
[WA,*,PH,*] 2 5 .55 6 9 .01 8 11 .01
10 13 .13 12 15 1.59 13 16 1.69
14 17 5.19 15 18 3.55 16 19 6.29
17 20 4.00 18 21 5.80 19 22 3.40
20 23 4.88 21 24 2.92 22 25 4.37
23 26 2.80 24 27 4.23 25 28 2.88
26 29 4.33 27 30 3.11 28 31 4.64
29 32 3.44 30 33 4.95 31 34 3.73
32 35 5.27 33 36 3.77 34 37 4.80
35 38 3.31 36 39 3.89 37 40 2.65
38 41 3.01 39 42 2.04 40 43 2.31
41 44 1.52 42 45 1.75 44 47 1.88
46 1 1.05
[PH,*,NY,*] 1 3 1.05 5 7 .43 9 11 .20
11 13 .21 13 15 .40 14 16 6.49
15 17 16.40 16 18 9.48 17 19 17.15
18 20 9.31 19 21 15.20 20 22 8.21
21 23 13.32 22 24 7.35 23 25 11.83
24 26 6.61 25 27 10.61 26 28 6.05
27 29 9.65 28 30 5.61 29 31 9.25
30 32 5.40 31 33 8.24 32 34 4.84
33 35 7.44 34 36 4.44 35 37 6.80
36 38 4.11 37 39 6.25 38 40 3.69
39 41 5.55 40 42 3.29 41 43 4.77
42 44 2.91 43 45 4.19 44 46 2.53
45 47 4.00 47 1 1.65
[NY,*,BO,*] 10 16 1.23 12 18 3.84 14 20 4.08
15 21 1.47 16 22 2.96 17 23 1.60
18 24 2.95 19 25 1.71 20 26 2.81
21 27 1.77 22 28 2.87 23 29 1.84
24 30 2.95 25 31 1.91 26 32 3.12
27 33 1.93 28 34 3.31 29 35 2.00
30 36 3.40 31 37 2.08 32 38 3.41
33 39 2.69 34 40 4.45 35 41 2.32
36 42 3.40 37 43 1.80 38 44 2.63
39 45 1.52 40 46 2.23 41 47 1.25
42 48 1.79 43 1 .97 44 2 1.28
45 3 .48 46 4 .68 48 6 .08
[BO,*,NY,*] 7 13 .03 9 15 1.29 11 17 4.59
12 18 2.56 13 19 3.92 14 20 2.37
15 21 3.81 16 22 2.24 17 23 3.51
18 24 2.13 19 25 3.28 20 26 2.05
21 27 3.15 22 28 1.99 23 29 3.09
24 30 1.93 25 31 3.19 26 32 1.91
27 33 3.21 28 34 1.85 29 35 3.21
30 36 1.71 31 37 3.04 32 38 2.08
33 39 3.13 34 40 1.96 35 41 2.53
36 42 1.43 37 43 2.04 38 44 1.12
39 45 1.71 40 46 .91 41 47 1.32
43 1 1.80 45 3 1.13 47 5 .23
[NY,*,PH,*] 1 3 .04 12 14 4.68 13 15 5.61
14 16 3.56 15 17 5.81 16 18 3.81
17 19 6.31 18 20 4.07 19 21 7.33
20 22 4.55 21 23 7.37 22 24 4.73
23 25 7.61 24 26 4.92 25 27 7.91
26 28 5.19 27 29 8.40 28 30 5.53
29 31 9.32 30 32 5.51 31 33 10.33
32 34 9.21 33 35 18.95 34 36 11.23
35 37 16.85 36 38 7.29 37 39 10.89
38 40 5.41 39 41 8.21 40 42 4.52
41 43 6.99 42 44 3.92 43 45 6.21
44 46 3.44 45 47 5.17 46 48 2.55
47 1 1.24
[PH,*,WA,*] 1 4 .20 14 17 4.49 15 18 3.53
16 19 2.67 17 20 3.83 18 21 3.01
19 22 4.12 20 23 3.15 21 24 4.67
22 25 3.20 23 26 4.23 24 27 2.87
25 28 3.84 26 29 2.60 27 30 3.80
28 31 2.77 29 32 4.31 30 33 3.16
31 34 4.88 32 35 3.45 33 36 5.55
34 37 3.52 35 38 6.11 36 39 3.32
37 40 5.53 38 41 3.03 39 42 4.51
40 43 2.53 41 44 3.39 42 45 1.93
43 46 2.52 44 47 1.20 45 48 1.75
46 1 .88 47 2 .87 ;
end;
|