1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535
|
/* main.c */
/* Written by Andrew Makhorin <mao@gnu.org>, October 2015. */
/***********************************************************************
* This program is a stand-alone solver intended for solving Symmetric
* Traveling Salesman Problem (TSP) with the branch-and-bound method.
*
* Please note that this program is only an illustrative example. It is
* *not* a state-of-the-art code, so only small TSP instances (perhaps,
* having up to 150-200 nodes) can be solved with this code.
*
* To run this program use the following command:
*
* tspsol tsp-file
*
* where tsp-file specifies an input text file containing TSP data in
* TSPLIB 95 format.
*
* Detailed description of the input format recognized by this program
* is given in the report: Gerhard Reinelt, "TSPLIB 95". This report as
* well as TSPLIB, a library of sample TSP instances (and other related
* problems), are freely available for research purposes at the webpage
* <http://www.iwr.uni-heidelberg.de/groups/comopt/software/TSPLIB95/>.
*
* Symmetric Traveling Salesman Problem
* ------------------------------------
* Let a complete undirected graph be given:
*
* K = (V, E), (1)
*
* where V = {1, ..., n} is a set of nodes, E = V cross V is a set of
* edges. Let also each edge e = (i,j) be assigned a positive number
* c[i,j], which is the length of e. The Symmetric Traveling Salesman
* Problem (TSP) is to find a tour in K of minimal length.
*
* Integer programming formulation of TSP
* --------------------------------------
* For a set of nodes W within V introduce the following notation:
*
* d(W) = {(i,j):i in W and j not in W or i not in W and j in W}, (2)
*
* i.e. d(W) is the set of edges which have exactly one endnode in W.
* If W = {v}, i.e. W consists of the only node, we write simply d(v).
*
* The integer programming formulation of TSP is the following:
*
* minimize sum c[i,j] * x[i,j] (3)
* i,j
*
* subject to sum x[i,j] = 2 for all v in V (4)
* (i,j) in d(v)
*
* sum x[i,j] >= 2 for all W within V, (5)
* (i,j) in d(W) W != empty, W != V
*
* x[i,j] in {0, 1} for all i, j (6)
*
* The binary variables x[i,j] have conventional meaning: if x[i,j] = 1,
* the edge (i,j) is included in the tour, otherwise, if x[i,j] = 0, the
* edge is not included in the tour.
*
* The constraints (4) are called degree constraints. They require that
* for each node v in V there must be exactly two edges included in the
* tour which are incident to v.
*
* The constraints (5) are called subtour elimination constraints. They
* are used to forbid subtours. Note that the number of the subtour
* elimination constraints grows exponentially on the size of the TSP
* instance, so these constraints are not included explicitly in the
* IP, but generated dynamically during the B&B search.
***********************************************************************/
#include <errno.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <time.h>
#include <glpk.h>
#include "maxflow.h"
#include "mincut.h"
#include "misc.h"
#include "tsplib.h"
int n;
/* number of nodes in the problem, n >= 2 */
int *c; /* int c[1+n*(n-1)/2]; */
/* upper triangle (without diagonal entries) of the (symmetric) matrix
* C = (c[i,j]) in row-wise format, where c[i,j] specifies a length of
* edge e = (i,j), 1 <= i < j <= n */
int *tour; /* int tour[1+n]; */
/* solution to TSP, which is a tour specified by the list of node
* numbers tour[1] -> ... -> tour[nn] -> tour[1] in the order the nodes
* are visited; note that any tour is a permutation of node numbers */
glp_prob *P;
/* integer programming problem object */
/***********************************************************************
* loc - determine reduced index of element of symmetric matrix
*
* Given indices i and j of an element of a symmetric nxn-matrix,
* 1 <= i, j <= n, i != j, this routine returns the index of that
* element in an array, which is the upper triangle (without diagonal
* entries) of the matrix in row-wise format. */
int loc(int i, int j)
{ xassert(1 <= i && i <= n);
xassert(1 <= j && j <= n);
xassert(i != j);
if (i < j)
return ((n - 1) + (n - i + 1)) * (i - 1) / 2 + (j - i);
else
return loc(j, i);
}
/***********************************************************************
* read_data - read TSP data
*
* This routine reads TSP data from a specified text file in TSPLIB 95
* format. */
void read_data(const char *fname)
{ TSP *tsp;
int i, j;
tsp = tsp_read_data(fname);
if (tsp == NULL)
{ xprintf("TSP data file processing error\n");
exit(EXIT_FAILURE);
}
if (tsp->type != TSP_TSP)
{ xprintf("Invalid TSP data type\n");
exit(EXIT_FAILURE);
}
n = tsp->dimension;
xassert(n >= 2);
if (n > 32768)
{ xprintf("TSP instance too large\n");
exit(EXIT_FAILURE);
}
c = xalloc(1+loc(n-1, n), sizeof(int));
for (i = 1; i <= n; i++)
{ for (j = i+1; j <= n; j++)
c[loc(i, j)] = tsp_distance(tsp, i, j);
}
tsp_free_data(tsp);
return;
}
/***********************************************************************
* build_prob - build initial integer programming problem
*
* This routine builds the initial integer programming problem, which
* includes all variables (6), objective (3) and all degree constraints
* (4). Subtour elimination constraints (5) are considered "lazy" and
* not included in the initial problem. */
void build_prob(void)
{ int i, j, k, *ind;
double *val;
char name[50];
/* create problem object */
P = glp_create_prob();
/* add all binary variables (6) */
for (i = 1; i <= n; i++)
{ for (j = i+1; j <= n; j++)
{ k = glp_add_cols(P, 1);
xassert(k == loc(i,j));
sprintf(name, "x[%d,%d]", i, j);
glp_set_col_name(P, k, name);
glp_set_col_kind(P, k, GLP_BV);
/* set objective coefficient (3) */
glp_set_obj_coef(P, k, c[k]);
}
}
/* add all degree constraints (4) */
ind = xalloc(1+n, sizeof(int));
val = xalloc(1+n, sizeof(double));
for (i = 1; i <= n; i++)
{ k = glp_add_rows(P, 1);
xassert(k == i);
sprintf(name, "v[%d]", i);
glp_set_row_name(P, i, name);
glp_set_row_bnds(P, i, GLP_FX, 2, 2);
k = 0;
for (j = 1; j <= n; j++)
{ if (i != j)
k++, ind[k] = loc(i,j), val[k] = 1;
}
xassert(k == n-1);
glp_set_mat_row(P, i, n-1, ind, val);
}
xfree(ind);
xfree(val);
return;
}
/***********************************************************************
* build_tour - build tour for corresponding solution to IP
*
* Given a feasible solution to IP (3)-(6) this routine builds the
* corresponding solution to TSP, which is a tour specified by the list
* of node numbers tour[1] -> ... -> tour[nn] -> tour[1] in the order
* the nodes are to be visited */
void build_tour(void)
{ int i, j, k, kk, *beg, *end;
/* solution to MIP should be feasible */
switch (glp_mip_status(P))
{ case GLP_FEAS:
case GLP_OPT:
break;
default:
xassert(P != P);
}
/* build the list of edges included in the tour */
beg = xalloc(1+n, sizeof(int));
end = xalloc(1+n, sizeof(int));
k = 0;
for (i = 1; i <= n; i++)
{ for (j = i+1; j <= n; j++)
{ double x;
x = glp_mip_col_val(P, loc(i,j));
xassert(x == 0 || x == 1);
if (x)
{ k++;
xassert(k <= n);
beg[k] = i, end[k] = j;
}
}
}
xassert(k == n);
/* reorder edges in the list as they follow in the tour */
for (k = 1; k <= n; k++)
{ /* find k-th edge of the tour */
j = (k == 1 ? 1 : end[k-1]);
for (kk = k; kk <= n; kk++)
{ if (beg[kk] == j)
break;
if (end[kk] == j)
{ end[kk] = beg[kk], beg[kk] = j;
break;
}
}
xassert(kk <= n);
/* put the edge to k-th position in the list */
i = beg[k], beg[k] = beg[kk], beg[kk] = i;
j = end[k], end[k] = end[kk], end[kk] = j;
}
/* build the tour starting from node 1 */
xassert(beg[1] == 1);
for (k = 1; k <= n; k++)
{ if (k > 1)
xassert(end[k-1] == beg[k]);
tour[k] = beg[k];
}
xassert(end[n] == 1);
xfree(beg);
xfree(end);
return;
}
/***********************************************************************
* tour_length - calculate tour length
*
* This routine calculates the length of the specified tour, which is
* the sum of corresponding edge lengths. */
int tour_length(const int tour[/*1+n*/])
{ int i, j, sum;
sum = 0;
for (i = 1; i <= n; i++)
{ j = (i < n ? i+1 : 1);
sum += c[loc(tour[i], tour[j])];
}
return sum;
}
/***********************************************************************
* write_tour - write tour to text file in TSPLIB format
*
* This routine writes the specified tour to a text file in TSPLIB
* format. */
void write_tour(const char *fname, const int tour[/*1+n*/])
{ FILE *fp;
int i;
xprintf("Writing TSP solution to '%s'...\n", fname);
fp = fopen(fname, "w");
if (fp == NULL)
{ xprintf("Unable to create '%s' - %s\n", fname,
strerror(errno));
return;
}
fprintf(fp, "NAME : %s\n", fname);
fprintf(fp, "COMMENT : Tour length is %d\n", tour_length(tour));
fprintf(fp, "TYPE : TOUR\n");
fprintf(fp, "DIMENSION : %d\n", n);
fprintf(fp, "TOUR_SECTION\n");
for (i = 1; i <= n; i++)
fprintf(fp, "%d\n", tour[i]);
fprintf(fp, "-1\n");
fprintf(fp, "EOF\n");
fclose(fp);
return;
}
/***********************************************************************
* gen_subt_row - generate violated subtour elimination constraint
*
* This routine is called from the MIP solver to generate a violated
* subtour elimination constraint (5).
*
* Constraints of this class has the form:
*
* sum x[i,j] >= 2, i in W, j in V \ W,
*
* for all W, where W is a proper nonempty subset of V, V is the set of
* nodes of the given graph.
*
* In order to find a violated constraint of this class this routine
* finds a min cut in a capacitated network, which has the same sets of
* nodes and edges as the original graph, and where capacities of edges
* are values of variables x[i,j] in a basic solution to LP relaxation
* of the current subproblem. */
void gen_subt(glp_tree *T)
{ int i, j, ne, nz, *beg, *end, *cap, *cut, *ind;
double sum, *val;
/* MIP preprocessor should not be used */
xassert(glp_ios_get_prob(T) == P);
/* if some variable x[i,j] is zero in basic solution, then the
* capacity of corresponding edge in the associated network is
* zero, so we may not include such edge in the network */
/* count number of edges having non-zero capacity */
ne = 0;
for (i = 1; i <= n; i++)
{ for (j = i+1; j <= n; j++)
{ if (glp_get_col_prim(P, loc(i,j)) >= .001)
ne++;
}
}
/* build the capacitated network */
beg = xalloc(1+ne, sizeof(int));
end = xalloc(1+ne, sizeof(int));
cap = xalloc(1+ne, sizeof(int));
nz = 0;
for (i = 1; i <= n; i++)
{ for (j = i+1; j <= n; j++)
{ if (glp_get_col_prim(P, loc(i,j)) >= .001)
{ nz++;
xassert(nz <= ne);
beg[nz] = i, end[nz] = j;
/* scale all edge capacities to make them integral */
cap[nz] = ceil(1000 * glp_get_col_prim(P, loc(i,j)));
}
}
}
xassert(nz == ne);
/* find minimal cut in the capacitated network */
cut = xalloc(1+n, sizeof(int));
min_cut(n, ne, beg, end, cap, cut);
/* determine the number of non-zero coefficients in the subtour
* elimination constraint and calculate its left-hand side which
* is the (unscaled) capacity of corresponding min cut */
ne = 0, sum = 0;
for (i = 1; i <= n; i++)
{ for (j = i+1; j <= n; j++)
{ if (cut[i] && !cut[j] || !cut[i] && cut[j])
{ ne++;
sum += glp_get_col_prim(P, loc(i,j));
}
}
}
/* if the (unscaled) capacity of min cut is less than 2, the
* corresponding subtour elimination constraint is violated */
if (sum <= 1.999)
{ /* build the list of non-zero coefficients */
ind = xalloc(1+ne, sizeof(int));
val = xalloc(1+ne, sizeof(double));
nz = 0;
for (i = 1; i <= n; i++)
{ for (j = i+1; j <= n; j++)
{ if (cut[i] && !cut[j] || !cut[i] && cut[j])
{ nz++;
xassert(nz <= ne);
ind[nz] = loc(i,j);
val[nz] = 1;
}
}
}
xassert(nz == ne);
/* add violated tour elimination constraint to the current
* subproblem */
i = glp_add_rows(P, 1);
glp_set_row_bnds(P, i, GLP_LO, 2, 0);
glp_set_mat_row(P, i, nz, ind, val);
xfree(ind);
xfree(val);
}
/* free working arrays */
xfree(beg);
xfree(end);
xfree(cap);
xfree(cut);
return;
}
/***********************************************************************
* cb_func - application callback routine
*
* This routine is called from the MIP solver at various points of
* the branch-and-cut algorithm. */
void cb_func(glp_tree *T, void *info)
{ xassert(info == info);
switch (glp_ios_reason(T))
{ case GLP_IROWGEN:
/* generate one violated subtour elimination constraint */
gen_subt(T);
break;
}
return;
}
/***********************************************************************
* main - TSP solver main program
*
* This main program parses command-line arguments, reads specified TSP
* instance from a text file, and calls the MIP solver to solve it. */
int main(int argc, char *argv[])
{ int j;
char *in_file = NULL, *out_file = NULL;
time_t start;
glp_iocp iocp;
/* parse command-line arguments */
# define p(str) (strcmp(argv[j], str) == 0)
for (j = 1; j < argc; j++)
{ if (p("--output") || p("-o"))
{ j++;
if (j == argc || argv[j][0] == '\0' || argv[j][0] == '-')
{ xprintf("No solution output file specified\n");
exit(EXIT_FAILURE);
}
if (out_file != NULL)
{ xprintf("Only one solution output file allowed\n");
exit(EXIT_FAILURE);
}
out_file = argv[j];
}
else if (p("--help") || p("-h"))
{ xprintf("Usage: %s [options...] tsp-file\n", argv[0]);
xprintf("\n");
xprintf("Options:\n");
xprintf(" -o filename, --output filename\n");
xprintf(" write solution to filename\n")
;
xprintf(" -h, --help display this help information"
" and exit\n");
exit(EXIT_SUCCESS);
}
else if (argv[j][0] == '-' ||
(argv[j][0] == '-' && argv[j][1] == '-'))
{ xprintf("Invalid option '%s'; try %s --help\n", argv[j],
argv[0]);
exit(EXIT_FAILURE);
}
else
{ if (in_file != NULL)
{ xprintf("Only one input file allowed\n");
exit(EXIT_FAILURE);
}
in_file = argv[j];
}
}
if (in_file == NULL)
{ xprintf("No input file specified; try %s --help\n", argv[0]);
exit(EXIT_FAILURE);
}
# undef p
/* display program banner */
xprintf("TSP Solver for GLPK %s\n", glp_version());
/* remove output solution file specified in command-line */
if (out_file != NULL)
remove(out_file);
/* read TSP instance from input data file */
read_data(in_file);
/* build initial IP problem */
start = time(NULL);
build_prob();
tour = xalloc(1+n, sizeof(int));
/* solve LP relaxation of initial IP problem */
xprintf("Solving initial LP relaxation...\n");
xassert(glp_simplex(P, NULL) == 0);
xassert(glp_get_status(P) == GLP_OPT);
/* solve IP problem with "lazy" constraints */
glp_init_iocp(&iocp);
iocp.br_tech = GLP_BR_MFV; /* most fractional variable */
iocp.bt_tech = GLP_BT_BLB; /* best local bound */
iocp.sr_heur = GLP_OFF; /* disable simple rounding heuristic */
iocp.gmi_cuts = GLP_ON; /* enable Gomory cuts */
iocp.cb_func = cb_func;
glp_intopt(P, &iocp);
build_tour();
/* display some statistics */
xprintf("Time used: %.1f secs\n", difftime(time(NULL), start));
{ size_t tpeak;
glp_mem_usage(NULL, NULL, NULL, &tpeak);
xprintf("Memory used: %.1f Mb (%.0f bytes)\n",
(double)tpeak / 1048576.0, (double)tpeak);
}
/* write solution to output file, if required */
if (out_file != NULL)
write_tour(out_file, tour);
/* deallocate working objects */
xfree(c);
xfree(tour);
glp_delete_prob(P);
/* check that no memory blocks are still allocated */
{ int count;
size_t total;
glp_mem_usage(&count, NULL, &total, NULL);
if (count != 0)
xerror("Error: %d memory block(s) were lost\n", count);
xassert(total == 0);
}
return 0;
}
/* eof */
|