1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248
|
#version 450
#extension GL_EXT_shader_explicit_arithmetic_types: enable
#extension GL_EXT_shader_explicit_arithmetic_types_int8: require
#extension GL_EXT_shader_explicit_arithmetic_types_int16: require
#extension GL_EXT_shader_explicit_arithmetic_types_int32: require
#extension GL_EXT_shader_explicit_arithmetic_types_int64: require
#extension GL_EXT_shader_explicit_arithmetic_types_float16: require
#extension GL_EXT_shader_explicit_arithmetic_types_float32: require
#extension GL_EXT_shader_explicit_arithmetic_types_float64: require
void main()
{
}
// Single float literals
void literal()
{
const float64_t f64c = 0.000001LF;
const f64vec2 f64cv = f64vec2(-0.25lF, 0.03Lf);
f64vec2 f64v;
f64v.x = f64c;
f64v += f64cv;
}
// Block memory layout
struct S
{
float64_t x;
f64vec2 y;
f64vec3 z;
};
layout(column_major, std140) uniform B1
{
float64_t a;
f64vec2 b;
f64vec3 c;
float64_t d[2];
f64mat2x3 e;
f64mat2x3 f[2];
S g;
S h[2];
};
// Specialization constant
layout(constant_id = 100) const float16_t sf16 = 0.125hf;
layout(constant_id = 101) const float32_t sf = 0.25;
layout(constant_id = 102) const float64_t sd = 0.5lf;
const float f16_to_f = float(sf16);
const double f16_to_d = float(sf16);
const float16_t f_to_f16 = float16_t(sf);
const float16_t d_to_f16 = float16_t(sd);
void operators()
{
float64_t f64;
f64vec2 f64v;
f64mat2x2 f64m;
bool b;
// Arithmetic
f64v += f64v;
f64v -= f64v;
f64v *= f64v;
f64v /= f64v;
f64v++;
f64v--;
++f64m;
--f64m;
f64v = -f64v;
f64m = -f64m;
f64 = f64v.x + f64v.y;
f64 = f64v.x - f64v.y;
f64 = f64v.x * f64v.y;
f64 = f64v.x / f64v.y;
// Relational
b = (f64v.x != f64);
b = (f64v.y == f64);
b = (f64v.x > f64);
b = (f64v.y < f64);
b = (f64v.x >= f64);
b = (f64v.y <= f64);
// Vector/matrix operations
f64v = f64v * f64;
f64m = f64m * f64;
f64v = f64m * f64v;
f64v = f64v * f64m;
f64m = f64m * f64m;
}
void typeCast()
{
bvec3 bv;
f32vec3 f32v;
f64vec3 f64v;
i8vec3 i8v;
u8vec3 u8v;
i16vec3 i16v;
u16vec3 u16v;
i32vec3 i32v;
u32vec3 u32v;
i64vec3 i64v;
u64vec3 u64v;
f16vec3 f16v;
f64v = f64vec3(bv); // bool -> float64
bv = bvec3(f64v); // float64 -> bool
f64v = f64vec3(f16v); // float16 -> float64
f16v = f16vec3(f64v); // float64 -> float16
i8v = i8vec3(f64v); // float64 -> int8
i16v = i16vec3(f64v); // float64 -> int16
i32v = i32vec3(f64v); // float64 -> int32
i64v = i64vec3(f64v); // float64 -> int64
u8v = u8vec3(f64v); // float64 -> uint8
u16v = u16vec3(f64v); // float64 -> uint16
u32v = u32vec3(f64v); // float64 -> uint32
u64v = u64vec3(f64v); // float64 -> uint64
}
// Trig, pow, exp and log are not supported for f64
void builtinTranscendentalFuncs()
{
f64vec2 f64v1, f64v2;
f64v2 = sqrt(f64v1);
f64v2 = inversesqrt(f64v1);
}
void builtinCommonFuncs()
{
f64vec3 f64v1, f64v2, f64v3;
float64_t f64;
bool b;
bvec3 bv;
ivec3 iv;
f64v2 = abs(f64v1);
f64v2 = sign(f64v1);
f64v2 = floor(f64v1);
f64v2 = trunc(f64v1);
f64v2 = round(f64v1);
f64v2 = roundEven(f64v1);
f64v2 = ceil(f64v1);
f64v2 = fract(f64v1);
f64v2 = mod(f64v1, f64v2);
f64v2 = mod(f64v1, f64);
f64v3 = modf(f64v1, f64v2);
f64v3 = min(f64v1, f64v2);
f64v3 = min(f64v1, f64);
f64v3 = max(f64v1, f64v2);
f64v3 = max(f64v1, f64);
f64v3 = clamp(f64v1, f64, f64v2.x);
f64v3 = clamp(f64v1, f64v2, f64vec3(f64));
f64v3 = mix(f64v1, f64v2, f64);
f64v3 = mix(f64v1, f64v2, f64v3);
f64v3 = mix(f64v1, f64v2, bv);
f64v3 = step(f64v1, f64v2);
f64v3 = step(f64, f64v3);
f64v3 = smoothstep(f64v1, f64v2, f64v3);
f64v3 = smoothstep(f64, f64v1.x, f64v2);
b = isnan(f64);
bv = isinf(f64v1);
f64v3 = fma(f64v1, f64v2, f64v3);
f64v2 = frexp(f64v1, iv);
f64v2 = ldexp(f64v1, iv);
}
void builtinGeometryFuncs()
{
float64_t f64;
f64vec3 f64v1, f64v2, f64v3;
f64 = length(f64v1);
f64 = distance(f64v1, f64v2);
f64 = dot(f64v1, f64v2);
f64v3 = cross(f64v1, f64v2);
f64v2 = normalize(f64v1);
f64v3 = faceforward(f64v1, f64v2, f64v3);
f64v3 = reflect(f64v1, f64v2);
f64v3 = refract(f64v1, f64v2, f64);
}
void builtinMatrixFuncs()
{
f64mat2x3 f64m1, f64m2, f64m3;
f64mat3x2 f64m4;
f64mat3 f64m5;
f64mat4 f64m6, f64m7;
f64vec3 f64v1;
f64vec2 f64v2;
float64_t f64;
f64m3 = matrixCompMult(f64m1, f64m2);
f64m1 = outerProduct(f64v1, f64v2);
f64m4 = transpose(f64m1);
f64 = determinant(f64m5);
f64m6 = inverse(f64m7);
}
void builtinVecRelFuncs()
{
f64vec3 f64v1, f64v2;
bvec3 bv;
bv = lessThan(f64v1, f64v2);
bv = lessThanEqual(f64v1, f64v2);
bv = greaterThan(f64v1, f64v2);
bv = greaterThanEqual(f64v1, f64v2);
bv = equal(f64v1, f64v2);
bv = notEqual(f64v1, f64v2);
}
in flat f64vec3 if64v;
void builtinFragProcFuncs()
{
f64vec3 f64v;
// Derivative
f64v.x = dFdx(if64v.x);
f64v.y = dFdy(if64v.y);
f64v.xy = dFdxFine(if64v.xy);
f64v.xy = dFdyFine(if64v.xy);
f64v = dFdxCoarse(if64v);
f64v = dFdxCoarse(if64v);
f64v.x = fwidth(if64v.x);
f64v.xy = fwidthFine(if64v.xy);
f64v = fwidthCoarse(if64v);
// Interpolation
f64v.x = interpolateAtCentroid(if64v.x);
f64v.xy = interpolateAtSample(if64v.xy, 1);
f64v = interpolateAtOffset(if64v, f64vec2(0.5f));
}
|