1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199
|
#include "audio/nebu_Source3D.h"
#include <assert.h>
#include <string.h>
Uint8 tmp[65536];
#define USOUND 50
#define EPSILON 0.1f
#define SOUND_VOL_THRESHOLD 0.1
#define VOLSCALE_BASE 1000
#define MAX(x,y) (( (x) > (y) ) ? (x) : (y))
/*!
\fn int fxShift(float shift, Uint8 *target, Uint8 *source, int len)
\param shift Shift of the frequency (new_frequency = shift * old_frequency)
\param target Target buffer to mix into; format: Sint16 LR stereo
\param source The buffer to mix from
\param len The amount of bytes to mix into the target buffer
\return The amount of samples read from the source
*/
int fxComputeShiftLen(float shift, int len) {
return (int) ( (len - 1) * shift + 1 );
}
int fxShift(float shift, Uint8 *target, Uint8 *source, int len) {
int i, j;
// amount of samples to mix/write
len /= 4;
for(i = 0; i < len; i++) { // LR pairs
for(j = 0; j < 2; j++) { // channels
Sint32 result = 0;
int pa;
float t;
pa = (int) (i * shift);
t = (i * shift) - pa;
result = (Sint32) (
*( (Sint16*) target + j + 2 * i) * 1.0f +
*( (Sint16*) source + j + 2 * (pa + 0) ) * (1.0f - t) +
*( (Sint16*) source + j + 2 * (pa + 1) ) * (t) );
#define MAX_SINT16 ((1 << 15) - 1)
#define MIN_SINT16 (- (1 << 15) )
if(result > MAX_SINT16) {
result = MAX_SINT16;
fprintf(stderr, "overflow\n");
} else if(result < MIN_SINT16) {
result = MIN_SINT16;
fprintf(stderr, "underflow\n");
}
*( (Sint16*) target + j + 2 * i ) = (Sint16) result;
/* *(Sint16*) (target + 2 * j + 4 * i) += (Sint16)
( *(Sint16*) (source + 2 * j + 4 * (k + 0) ) * ( 1 - l ) +
*(Sint16*) (source + 2 * j + 4 * (k + 2) ) * ( l ) ); */
}
}
return 4 * fxComputeShiftLen(shift, len);
}
/*!
\fn void fxPan(float pan, float vol, Uint8 *buf, int len)
\param vol Volume (for distance attenuation), should be between 0 and 1
\param pan Panning, -1.0 is left, 1.0 is right, 0.0 is center
\param buf The sample to be modified in-place, format: Sint16 LR stereo
\param len Number of bytes
*/
void fxPan(float pan, float vol, Uint8 *buf, int len) {
int i;
float left_vol = - vol * ( -1.0f + pan ) / 2.0f;
float right_vol = vol * ( 1.0f + pan ) / 2.0f;
for(i = 0; i < len; i += 4) {
*(Sint16*) (buf + i) = // *= left_vol
(Sint16) (left_vol * *(Sint16*) (buf + i) );
*(Sint16*) (buf + i + 2) = // *= right_vol
(Sint16) (right_vol * *(Sint16*) (buf + i + 2) );
}
}
namespace Sound {
void Source3D::GetModifiers(float& fPan, float& fVolume, float& fShift) {
Vector3& vSourceLocation = _location;
Vector3& vSourceVelocity = _velocity;
Listener listener = _system->GetListener();
Vector3& vListenerLocation = listener._location;
Vector3 vListenerVelocity = listener._velocity;
Vector3 vListenerDirection = listener._direction;
Vector3 vListenerUp = listener._up;
if( (vSourceLocation - vListenerLocation).Length() < EPSILON ) {
fPan = 0;
fVolume = 1.0f;
fShift = 1.0f;
return;
}
vListenerDirection.Normalize();
vListenerUp.Normalize();
Vector3 vListenerLeft = vListenerDirection.Cross( vListenerUp );
vListenerLeft.Normalize();
/* panning */
Vector3 vTarget = vSourceLocation - vListenerLocation;
Vector3 v1 = vListenerLeft * ( vTarget * vListenerLeft );
Vector3 v2 = vListenerDirection * (vTarget * vListenerDirection );
Vector3 vTargetPlanar = v1 + v2;
float cosPhi =
vTargetPlanar.Normalize() *
vListenerDirection;
fPan = 1 - (float)fabs(cosPhi);
if( vTargetPlanar * vListenerLeft < 0 )
fPan = -fPan;
/* done panning */
/* attenuation */
// float fallOff = vTarget.Length2();
float fallOff = (float)pow(vTarget.Length(), 1.8f);
fVolume = (fallOff > VOLSCALE_BASE) ?
(VOLSCALE_BASE / fallOff) : (1.0f);
/* done attenuation */
/* doppler */
fShift =
(USOUND + ( vListenerVelocity * vTarget ) / vTarget.Length() ) /
(USOUND + ( vSourceVelocity * vTarget ) / vTarget.Length() );
if(fShift < 0.5) {
printf("clamping fShift from %.2f to 0.5\n", fShift);
fShift = 0.5f;
}
if(fShift > 1.5) {
printf("clamping fShift from %.2f to 1.5\n", fShift);
fShift = 1.5f;
}
/* done doppler */
}
int Source3D::Mix(Uint8 *data, int len) {
if(_source->_buffer == NULL) return 0;
if(_source->IsPlaying()) {
int volume = (int)(_source->GetVolume() * SDL_MIX_MAXVOLUME);
float pan = 0, shift = 1.0f, vol = 1.0f;
int clen, shifted_len;
GetModifiers(pan, vol, shift);
// printf("received: volume: %.4f, panning: %.4f, shift: %.4f\n", vol, pan, shift);
shifted_len = 4 * fxComputeShiftLen( shift, len / 4 );
clen = MAX(len, shifted_len) + 32; // safety distance
assert(clen < _source->_buffersize);
if(vol > SOUND_VOL_THRESHOLD) {
// copy clen bytes from the buffer to a temporary buffer
if(clen <= _source->_buffersize - _position) {
memcpy(tmp, _source->_buffer + _position, clen);
} else {
memcpy(tmp, _source->_buffer + _position,
_source->_buffersize - _position);
memcpy(tmp + _source->_buffersize - _position, _source->_buffer,
clen - (_source->_buffersize - _position));
}
fxPan(pan, vol, tmp, clen);
// fxshift mixes the data to the stream
_position += fxShift(shift, data, tmp, len);
if(_position > _source->_buffersize)
_position -= _source->_buffersize;
return 1; // mixed something
}
}
return 0; // didn't mix anything to the stream
}
}
|