1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310
|
<!DOCTYPE html>
<html xmlns="http://www.w3.org/1999/xhtml" lang="" xml:lang="">
<head>
<meta charset="utf-8" />
<meta name="generator" content="pandoc" />
<meta name="viewport" content="width=device-width, initial-scale=1.0, user-scalable=yes" />
<title>index.md</title>
<style>
div#header, header
{
border-bottom: 1px solid #aaa;
margin-bottom: 0.5em;
}
.title
{
text-align: center;
}
.author, .date
{
text-align: center;
}
div#TOC, nav#TOC
{
border-bottom: 1px solid #aaa;
margin-bottom: 0.5em;
}
nav#TOC {
margin-bottom: var(--line-height);
padding-bottom: 0.5rem;
}
nav#TOC input {
display: none;
}
nav#TOC label {
color: var(--color-link);
cursor: pointer;
}
nav#TOC > ul {
display: none;
}
nav#TOC > input:checked + ul {
display: block;
}
@media print
{
div#TOC, nav#TOC
{
display: none;
}
}
div.content
{
color: #111111;
font-size: 14px;
line-height: 1.6;
}
div#cgit a
{
color: #1212a0;
}
div#cgit a.sourceLine
{
color: #111111;
}
h1, h2, h3, h4, h5, h6
{
font-family: "Helvetica Neue", Helvetica, "Liberation Sans", Calibri, Arial, sans-serif;
page-break-after: avoid;
margin: 20px 0 10px;
padding: 0;
}
h2 {
border-bottom: 1px solid #ccc;
}
div div
{
}
section section
{
margin-left: 2em;
}
p {}
blockquote
{
font-style: italic;
}
li
{
}
li > p
{
margin-top: 1em;
}
ul
{
}
ul li
{
}
ol
{
}
ol li
{
}
hr {}
sub
{
}
sup
{
}
em
{
}
em > em
{
font-style: normal;
}
strong
{
}
a
{
text-decoration: none;
}
@media screen
{
a:hover
{
text-decoration: underline;
}
}
@media print
{
a {
color: black;
background: transparent;
}
a[href^="http://"]:after, a[href^="https://"]:after
{
content: " (" attr(href) ") ";
font-size: 90%;
}
}
img
{
vertical-align: middle;
}
div.figure
{
margin-left: auto;
margin-right: auto;
text-align: center;
font-style: italic;
}
p.caption
{
}
pre, code
{
background-color: #f8f8f8;
white-space: pre-wrap;
white-space: -moz-pre-wrap !important;
white-space: -pre-wrap;
white-space: -o-pre-wrap;
word-wrap: break-word;
}
pre
{
padding: 0.5em;
border-radius: 5px;
background-color: #f8f8f8;
border: 1px solid #ccc;
font-size: 13px;
line-height: 19px;
overflow: auto;
padding: 6px 10px;
margin-left: 0.5em;
margin-right: 0.5em;
}
@media screen
{
pre
{
white-space: pre;
overflow: auto;
border: 1px dotted #777;
}
}
code
{
}
p > code, li > code
{
padding-left: 2px;
padding-right: 2px;
}
li > p code
{
padding: 2px;
}
span.math
{
}
div.math
{
}
span.LaTeX
{
}
eq
{
}
table
{
border-collapse: collapse;
border-spacing: 0;
margin-left: auto;
margin-right: auto;
}
thead
{
border-bottom: 1pt solid #000;
background-color: #eee;
}
tr.header
{
}
tbody
{
}
tr {
}
tr.odd:hover, tr.even:hover
{
background-color: #eee;
}
tr.odd {}
tr.even {}
td, th
{
vertical-align: top;
vertical-align: baseline;
padding-left: 0.5em;
padding-right: 0.5em;
padding-top: 0.2em;
padding-bottom: 0.2em;
}
th
{
font-weight: bold;
}
tfoot
{
}
caption
{
caption-side: top;
border: none;
font-size: 0.9em;
font-style: italic;
text-align: center;
margin-bottom: 0.3em;
padding-bottom: 0.2em;
}
dl
{
border-top: 2pt solid black;
padding-top: 0.5em;
border-bottom: 2pt solid black;
}
dt
{
font-weight: bold;
}
dd+dt
{
border-top: 1pt solid black;
padding-top: 0.5em;
}
dd
{
margin-bottom: 0.5em;
}
dd+dd
{
border-top: 1px solid black;
}
a.footnote, a.footnoteRef {
font-size: small;
vertical-align: text-top;
}
a[href^="#fnref"], a.reversefootnote
{
}
@media print
{
a[href^="#fnref"], a.reversefootnote
{
display: none;
}
}
div.footnotes
{
}
div.footnotes li[id^="fn"]
{
}
@media print
{
.noprint
{
display:none;
}
}
</style>
</head>
<body>
<nav id="TOC" role="doc-toc">
<strong>Contents</strong><label for="contents">⊕</label>
<input type="checkbox" id="contents">
<ul>
<li><a href="#gluegen-manual">GlueGen Manual</a>
<ul>
<li><a href="#references">References</a></li>
<li><a href="#chapter-1---introduction"><span id="Chapter1">Chapter 1
- Introduction</span></a>
<ul>
<li><a href="#introduction"><span
id="SecIntroduction">Introduction</span></a></li>
<li><a href="#structure-of-the-generated-glue-code"><span
id="SecStructure">Structure of the Generated Glue Code</span></a></li>
<li><a href="#unique-features"><span id="SecUnique">Unique
Features</span></a></li>
<li><a href="#background-and-design-principles"><span
id="SecBackground">Background and Design Principles</span></a></li>
</ul></li>
<li><a href="#chapter-2---using-gluegen"><span id="Chapter2">Chapter 2
- Using GlueGen</span></a>
<ul>
<li><a href="#acquiring-and-building-gluegen"><span
id="SecAcquiring">Acquiring and Building GlueGen</span></a></li>
<li><a href="#basic-operation"><span id="SecBasic">Basic
Operation</span></a></li>
<li><a href="#running-gluegen-as-an-ant-task"><span
id="SecAnt">Running GlueGen as an Ant Task</span></a></li>
<li><a href="#jcpp"><span id="SecJCPP">JCPP</span></a></li>
<li><a href="#stub-headers"><span id="SecStub">Stub
Headers</span></a></li>
<li><a href="#and-64-bit-considerations"><span id="Sec32">32- and
64-bit Considerations</span></a></li>
<li><a href="#opaque-directives"><span id="SecOpaque">Opaque
Directives</span></a></li>
<li><a href="#argument-name-substitution"><span
id="SecSubstitution">Argument Name Substitution</span></a></li>
<li><a href="#configuration-file-directives"><span
id="SecConfiguration">Configuration File Directives</span></a></li>
</ul></li>
<li><a href="#chapter-3---configuration-file-examples"><span
id="Chapter3">Chapter 3 - Configuration File Examples</span></a>
<ul>
<li><a href="#simplest-possible-example"><span
id="SecSimplest">Simplest possible example</span></a></li>
<li><a href="#arrays-and-buffers"><span id="SecArrays">Arrays and
buffers</span></a></li>
<li><a href="#string-handling"><span id="SecString">String
handling</span></a></li>
<li><a href="#memory-allocation"><span id="SecMemory">Memory
allocation</span></a></li>
<li><a href="#ingoing-and-outgoing-structs"><span
id="SecStructs">Ingoing and outgoing structs</span></a></li>
<li><a href="#returned-arrays-of-structs"><span
id="SecStructArrays">Returned arrays of structs</span></a></li>
<li><a href="#returned-arrays-of-pointers"><span
id="SecPointerArrays">Returned arrays of pointers</span></a></li>
</ul></li>
</ul></li>
</ul>
</nav>
<!---
We convert markdown using pandoc using `markdown+lists_without_preceding_blankline` as source format
and `html5+smart` with a custom template as the target.
Recipe:
```
~/pandoc-buttondown-cgit/pandoc_md2html_local.sh index.md > index.html
```
Git repos:
- https://jausoft.com/cgit/users/sgothel/pandoc-buttondown-cgit.git/about/
- https://github.com/sgothel/pandoc-buttondown-cgit
-->
<style>
table, th, td {
border: 1px solid black;
}
</style>
<h1 id="gluegen-manual">GlueGen Manual</h1>
<p><em>Disclaimer: This documented shall be synchronized with source
code, especially the configuration options.</em></p>
<p>Please also consider reading <a
href="../GlueGen_Mapping.html">GlueGen Native Data & Function
Mapping</a> for details on native data and function mappings.</p>
<h2 id="references">References</h2>
<ul>
<li><a href="https://jogamp.org/cgit/gluegen.git/about/">GlueGen Git
Repo</a></li>
<li><a
href="https://jogamp.org/deployment/jogamp-next/javadoc/gluegen/javadoc/">GlueGen
Java™ API-Doc</a></li>
<li><a href="../GlueGen_Mapping.html">GlueGen Native Data & Function
Mapping for Java™</a></li>
<li><a href="https://jogamp.org/gluegen/www/">GlueGen Project
Page</a></li>
<li><a href="../HowToBuild.html">How To Build</a></li>
</ul>
<h2 id="chapter-1---introduction"><span id="Chapter1">Chapter 1 -
Introduction</span></h2>
<h3 id="introduction"><span
id="SecIntroduction">Introduction</span></h3>
<p>GlueGen is a tool which automatically generates the Java and JNI code
necessary to call C libraries. It reads as input ANSI C header files and
separate configuration files which provide control over many aspects of
the glue code generation. GlueGen uses a complete ANSI C parser and an
internal representation (IR) capable of representing all C types to
represent the APIs for which it generates interfaces. It has the ability
to perform significant transformations on the IR before glue code
emission. GlueGen is currently powerful enough to bind even low-level
APIs such as the Java Native Interface (JNI) and the AWT Native
Interface (JAWT) back up to the Java programming language.</p>
<p>GlueGen is currently used to generate the JOGL interface to the
OpenGL 3D graphics API and the JOAL interface to the OpenAL audio
library. In the case of JOGL, GlueGen is used not only to bind OpenGL to
Java, but also the low-level windowing system APIs on the Windows, X11
and Mac OS X platforms. The implementation of the JOGL library is
thereby written in the Java programming language rather than in C, which
has offered considerable advantages during the development of the
library.</p>
<p>GlueGen is designed in modular form and can be extended to alter the
glue code emission style or to generate interface code for other
languages than Java.</p>
<p>This manual describes how to use GlueGen to bind new C libraries to
the Java programming language.</p>
<h3 id="structure-of-the-generated-glue-code"><span
id="SecStructure">Structure of the Generated Glue Code</span></h3>
<p>GlueGen supports two basic styles of glue code generation: everything
in one class, or a separate interface and implementing class. The first
mode, “AllStatic”, exposes the underlying C functions as a set of static
Java methods in a concrete class. This is a straightforward binding
mechanism, but has the disadvantage of tying users to a concrete class
(which may or may not be a problem) and makes it more difficult to
support certain kinds of call-through-function-pointer semantics
required by certain C APIs. The second mode, “InterfaceAndImpl”, exposes
the C functions as methods in an interface and emits the implementation
of that interface into a separate class and package. The implementing
class is not intended to be in the public API; this more strongly
separates the user from the implementation of the API. Additionally,
because it is necessary to hold an instance of the implementing class in
order to access the underlying C routines, it is easier to support
situations where call-through-function-pointer semantics must be
followed, in particular where those function pointers might change from
instance to instance.</p>
<p>The generated glue code follows some basic rules in binding C APIs to
Java:</p>
<ul>
<li>C primitive types are exposed as the corresponding Java primitive
type.</li>
<li>Pointers to typed C primitives (<code>int*</code>,
<code>float*</code>) are bound to java.nio Buffer subclasses
(<code>IntBuffer</code>, <code>FloatBuffer</code>) and optionally to
Java arrays (<code>int[]</code>, <code>float[]</code>).
<ul>
<li>If a C function takes such a pointer as an outgoing argument, two
method overloadings will generally be produced; one which accepts a
Buffer, and one which accepts a primitive array plus an integer offset
argument. The variant taking a Buffer may accept either a “direct” NIO
Buffer or a non-direct one (wrapping a Java array). The exception is
when such a routine is specified by the <a
href="#NioDirectOnly">NioDirectOnly</a> directive to keep a persistent
pointer to the passed storage, in which case only the Buffer variant
will be generated, and will only accept a direct Buffer as
argument.</li>
<li>If a C function returns such a pointer as its result, it will be
exposed as the corresponding Buffer type. In this case it is also
typically necessary to specify to GlueGen via the <a
href="#ReturnValueCapacity">ReturnValueCapacity</a> directive the number
of addressable elements in the resulting array.</li>
</ul></li>
<li>Pointers to <code>void*</code> are bound to java.nio.Buffer.
<ul>
<li>By default any C function accepting a <code>void*</code> argument
will allow either a direct or non-direct java.nio Buffer to be passed as
argument. If the <a href="#NioDirectOnly">NioDirectOnly</a> directive is
specified, however, only a direct Buffer will be accepted.</li>
<li>Similar rules for <code>void*</code> return values apply to those
for pointers to typed primitives.</li>
</ul></li>
<li>To avoid an explosion in the number of generated methods, if a
particular API accepts more than one typed primitive pointer argument,
only two overloadings continue to be produced: one accepting all arrays
as arguments and one accepting all Buffers as arguments. When calling
the variant accepting Buffers, all of the Buffers passed in a particular
call must be either direct or non-direct. Mixing of direct and
non-direct Buffers in a given function call is not supported.</li>
<li>When a java.nio Buffer is passed from Java to C, the position of the
Buffer is taken into account. The resulting pointer passed to C is equal
to the base address of the Buffer plus the position scaled appropriately
for the size of the primitive elements in the Buffer. This feature is
called “auto-slicing”, as it mimics the behavior of calling
Buffer.slice() without the overhead of explicit object creation.</li>
<li>Pointers to constant <code>char*</code> may be bound to
java.lang.String using the <a
href="#ArgumentIsString">ArgumentIsString</a> or <a
href="#ReturnsString">ReturnsString</a> directives.</li>
<li><code>#define</code> statements in header files mapping names to
constant values are exposed as public static final constant values in
either the generated interface or AllStatic class.</li>
<li>C structs encountered during the glue code generation process and
referenced by the C functions are exposed as Java classes of the same
name (typically the name to which the struct is typedefed). Each
primitive field in the struct is exposed as two methods; a getter, which
accepts no arguments, and a setter, which accepts as argument a
primitive value of the type of the field. Static factory methods are
exposed allowing allocation of these structs from Java code. The backing
storage for these Java classes is a direct java.nio Buffer. GlueGen
fully supports returning of pointers to C structs up to Java.</li>
</ul>
<h3 id="unique-features"><span id="SecUnique">Unique
Features</span></h3>
<p>GlueGen contains several unique features making it both a powerful
and easy-to-use tool.</p>
<ul>
<li>C structs are exposed as Java classes. The generated code for these
classes supports both 32-bit and 64-bit platforms.</li>
<li>C structs containing function pointers are exposed as Java classes
with methods. This makes it easy to interact with low-level C APIs such
as the AWT Native Interface (JAWT) from the Java programming language
level.
<ul>
<li>In this context, GlueGen automatically detects which argument to the
various function pointers indicates the “this” pointer, hiding it at the
Java level and passing it automatically.</li>
<li>GlueGen offers automatic handling of JNI-specific data types such as
<code>JNIEnv*</code> and <code>jobject</code>. The tool understands that
the <code>JNIEnv*</code> argument is implicit and that
<code>jobject</code> maps to java.lang.Object at the Java programming
language level. While this is most useful when binding JDK-internal APIs
such as the JAWT to Java, there may be other JNI libraries which expose
C functions taking these data types, and GlueGen can very easily bind to
them.</li>
</ul></li>
</ul>
<h3 id="background-and-design-principles"><span
id="SecBackground">Background and Design Principles</span></h3>
<p>This section provides motivation for the design of the GlueGen tool
and is not necessary to understand how to use the tool.</p>
<p>There are many tools available for assisting in the autogeneration of
foreign function interfaces for various high-level languages. Only a few
examples include <a
href="http://alumni.media.mit.edu/~kbrussel/Header2Scheme/">Header2Scheme</a>,
an early tool allowing binding of a limited subset of C++ to the Scheme
programming language; <a href="http://www.swig.org/">SWIG</a>, a tool
released at roughly the same time as Header2Scheme which by now supports
binding C and C++ libraries to a variety of scripting languages; <a
href="http://www.jniwrapper.com/">JNIWrapper</a>, a commercial tool
automating the binding of C APIs to Java; and <a
href="http://web.archive.org/web/20070419183658/http://www.noodleglue.org/noodleglue/noodleglue.html">NoodleGlue</a>,
a recently-released tool automating the binding of C++ APIs to Java.
Other language-specific tools such as Perl’s XS, Boost.Python and many
others exist.</p>
<p>GlueGen was designed with a few key principles in mind. The most
fundamental was to support binding of the lowest-level APIs on a given
platform up to the Java programming language. The intended goal, in the
context of the JOGL project, was to allow subsets of the Win32 and X11
APIs to be exposed to Java, and to use those APIs to write the
behind-the-scenes OpenGL context creation and management code in Java
instead of C. This informed several other design goals:</p>
<ul>
<li>Avoid touching the C headers as much as possible. This makes it
easier to upgrade to a more recent version of the C API just by copying
in a new set of headers.</li>
<li>Avoid touching the generated glue code completely.</li>
<li>Avoid having to hand-write a lot of generated glue code. Instead,
handle many complex constructs automatically and provide sufficient
control over the glue code generation to avoid having to handwrite
certain native methods where one or two lines of tweaking would
suffice.</li>
<li>Support all C constructs in the parser and intermediate
representation. The rationale is that it is acceptable to cut corners in
the number of constructs supported in the Java binding, but not whether
the tool can internally represent it in its C type system. This design
goal implies starting with complete a ANSI C parser coupled with a
complete C type system.</li>
<li>As the tool is targetting the Java programming language, build the
tool in the Java programming language.</li>
</ul>
<p>In order to make the problem more tractable, support for binding C++
to the Java programming language was not considered. C++ adds many
constructs over ANSI C which make it much more difficult to reason about
and to find a useful subset to support binding to Java. Additionally, it
seems that there are relatively few C++-specific libraries in general
use which could be usefully bound to Java, although this may be a matter
of opinion.</p>
<p>GlueGen was designed with the Java programming language in mind, but
is not necessarily restricted to generating glue code for the Java
language. The tool is divided into separate parse and code generation
phases, and the internal representation is fairly easy to iterate over.
The core driver of GlueGen may therefore be useful in producing other
tools which autogenerate foreign function interfaces to C libraries for
other languages.</p>
<h2 id="chapter-2---using-gluegen"><span id="Chapter2">Chapter 2 - Using
GlueGen</span></h2>
<h3 id="acquiring-and-building-gluegen"><span
id="SecAcquiring">Acquiring and Building GlueGen</span></h3>
<p>The source code for GlueGen may be obtained by cloning the Git
repository:</p>
<pre><code> $git clone --recursive git://jogamp.org/srv/scm/gluegen.git gluegen
</code></pre>
<p>To build GlueGen, cd into the gluegen/make folder and invoke ant.</p>
<pre><code> $ant clean all test
</code></pre>
<p>Ant 1.8 or later and a Java 6 compatible JDK is required.</p>
<h4 id="common-build-problems"><span id="SecCommon">Common Build
Problems</span></h4>
<p><strong>CharScanner; panic: ClassNotFoundException:
com.jogamp.gluegen.cgram.CToken</strong><br />
This occurs because ANTLR was dropped into the Extensions directory of
the JRE/JDK. On Windows and Linux, delete any ANTLR jars from
jre/lib/ext, and on Mac OS X, delete them from /Library/Java/Extensions.
Use the antlr.jar property in the build.xml to point to a JRE-external
location of this jar file.</p>
<h3 id="basic-operation"><span id="SecBasic">Basic Operation</span></h3>
<p>GlueGen can be run either as an executable jar file
(<code>java -jar gluegen.jar</code>; note that antlr.jar must be in the
same directory as gluegen.jar in order for this invocation to work) or
from within Ant as described in the following section. When run from the
command line, GlueGen accepts four kinds of command-line arguments:</p>
<ul>
<li>-I<em>dir</em> (optional) adds <em>dir</em> to the include path.
Similarly to a C compiler or preprocessor, GlueGen scans a set of
directories to locate header files it encounters in
<code>#include</code> directives. Unlike most C preprocessors, however,
GlueGen has no default include path, so it is typically necessary to
supply at least one <code>-I</code> option on the command line in order
to handle any <code>#include</code> directives in the file being
parsed.</li>
<li>-E<em>emitterClassName</em> (optional) uses
<em>emitterClassName</em> as the fully-qualified name of the emitter
class which will be used by GlueGen to generate the glue code. The
emitter class must implement the
<code>com.jogamp.gluegen.GlueEmitter</code> interface. If this option is
not specified, a <code>com.jogamp.gluegen.JavaEmitter</code> will be
used by default.</li>
<li>-C<em>cfgFile</em> adds <em>cfgFile</em> to the list of
configuration files used to set up the chosen emitter. This is the means
by which a large number of options are passed in to the GlueGen tool and
to the emitter in particular. Configuration files are discussed more in
the following section.</li>
<li>[ filename | - ] selects the file or standard input from which
GlueGen should read the C header file for which glue code should be
generated. This must be the last command-line argument, and only one
filename argument is supported. To cause multiple header files to be
parsed, write a small .c file #including the multiple headers and point
GlueGen at the .c file.</li>
</ul>
<h3 id="running-gluegen-as-an-ant-task"><span id="SecAnt">Running
GlueGen as an Ant Task</span></h3>
<p>GlueGen can also be invoked as a subtask within Ant. In order to do
so, a path element should be defined as follows:</p>
<pre><code> <path id="gluegen.classpath">
<pathelement location="${gluegen.jar}" />
<pathelement location="${antlr.jar}" />
</path>
</code></pre>
<p>where the <code>gluegen.jar</code> and <code>antlr.jar</code>
properties point to the respective jar files. A taskdef defining the
GlueGen task should then be specified as follows:</p>
<pre><code><taskdef name="gluegen"
classname="com.jogamp.gluegen.ant.GlueGenTask"
classpathref="gluegen.classpath" />
</code></pre>
<p>At this point GlueGen may be invoked as follows:</p>
<pre><code><gluegen src="[header to parse]"
config="[configuration file]"
includeRefid="[dirset for include path]"
emitter="com.jogamp.gluegen.JavaEmitter">
<classpath refid="gluegen.classpath" />
</gluegen>
</code></pre>
<p>Please see the <a href="http://jogamp.org/jogl/">JOGL</a> and <a
href="http://jogamp.org/joal/">JOAL</a> build.xml files for concrete,
though non-trivial, examples of how to invoke GlueGen via Ant.</p>
<h3 id="jcpp"><span id="SecJCPP">JCPP</span></h3>
<p>GlueGen contains and uses the <a
href="https://jogamp.org/cgit/jcpp.git/about/">C preprocessor JCPP</a>,
see <a href="https://www.anarres.org/projects/jcpp/">original
homepage</a>.</p>
<p>Constant values intended for use by end users are defined in many C
libraries’ headers using <code>#define</code>s rather than constant int
declarations. If the header would be processed by a full C preprocessor,
the <code>#define</code> statement’s macro name become unavailable for
processing by the glue code generator. Using JCPP allows us to utilize
the <code>#define</code> macro names and values.</p>
<p>JCPP is largely an invisible part of the glue code generation
process. If GlueGen’s output is not as expected and there is heavy use
of the C preprocessor in the header, run JCPP against the header
directly (JCPP takes simply the -I and filename arguments accepted by
GlueGen) and examine the output.</p>
<h3 id="stub-headers"><span id="SecStub">Stub Headers</span></h3>
<p>As much as is possible, GlueGen is intended to operate on unmodified
C header files, so that it is easy to upgrade the given C API being
bound to Java simply by dropping in a new set of header files. However,
most C headers contain references to standard headers like
<code>stdio.h</code>, and if this header is parsed by GlueGen, the tool
will automatically attempt to generate Java entry points for such
routines as <code>fread</code> and <code>fwrite</code>, among others. It
is impractical to exclude these APIs on a case by case basis. Therefore,
the suggested technique to avoid polluting the binding with these APIs
is to “stub out” the headers.</p>
<p>GlueGen searches the include path for headers in the order the
include directories were specified to the tool. Placing another
directory in front of the one in which the bulk of the headers are found
allows, for example, an alternative <code>stdio.h</code> to be inserted
which contains few or no declarations but which satisfies the need of
the dependent header to find such a file.</p>
<p>GlueGen uses a complete ANSI and GNU C parser written by John
Mitchell and Monty Zukowski from the set of grammars available for the
ANTLR tool by Terrence Parr. As a complete C parser, this grammar
requires all data types encountered during the parse to be fully
defined. Often a particular header will be included by another one in
order to pick up data type declarations rather than API declarations.
Stubbing out the header with a smaller one providing a “fake” type
declaration is a useful technique for avoiding the binding of
unnecessary APIs during the glue code process.</p>
<p>Here’s an example from the JOGL glue code generation process. The
<code>glext.h</code> header defining OpenGL extensions references
<code>stddef.h</code> in order to pick up the <code>ptrdiff_t</code>
data type. We choose to not include the real stddef.h but instead to
swap in a stub header. The contents of this header are therefore as
follows:</p>
<pre><code> #if defined(_WIN64)
typedef __int64 ptrdiff_t;
#elif defined(__ia64__) || defined(__x86_64__)
typedef long int ptrdiff_t;
#else
typedef int ptrdiff_t;
#endif
</code></pre>
<p>This causes the ptrdiff_t data type to be defined appropriately for
the current architecture. It will be referenced during the glue code
generation and cause a Java value of the appropriate type (int or long)
to be used to represent it.</p>
<p>This is not the best example because it involves a data type which
changes size between 32- and 64-bit platforms, and there are otner
considerations to take into account in these situations (see the section
<a href="#Sec32">32- and 64-bit considerations</a>). Here’s another
example, again from the JOGL source tree. JOGL binds the AWT Native
Interface, or JAWT, up to the Java programming language so that the
low-level code which binds OpenGL contexts to Windows device contexts
may be written in Java. The JDK’s <code>jawt_md.h</code> on the Windows
platform includes <code>windows.h</code> to pick up the definitions of
data types such as <code>HWND</code> (window handle) and
<code>HDC</code> (handle to device context). However, it is undesirable
to try to parse the real <code>windows.h</code> just to pick up these
typedefs; not only does this header contain thousands of unneeded APIs,
but it also uses certain macro constructs not supported by GlueGen’s
contained <a href="#SecJCPP">C preprocessor</a>. To avoid these
problems, a “stub” <code>windows.h</code> header is placed in GlueGen’s
include path containing only the necessary typedefs:</p>
<pre><code> typedef struct _handle* HANDLE;
typedef HANDLE HDC;
typedef HANDLE HWND;
</code></pre>
<p>Note that it is essential that the type being specified to GlueGen is
compatible at least in semantics with the real definition of the HANDLE
typedef in the real <code>windows.h</code>, so that during compilation
of GlueGen’s autogenerated C code, when the real <code>windows.h</code>
is referenced by the C compiler, the autogenerated code will compile
correctly.</p>
<p>This example is not really complete as it also requires <a
href="#Sec32">consideration of the size of data types on 32- and 64-bit
platforms</a> as well as a discussion of how certain <a
href="#SecOpaque">opaque data types</a> are described to GlueGen and
exposed in its autogenerated APIs. Nonetheless, it illustrates at a
basic level why using a stub header is necessary and useful in certain
situations.</p>
<h3 id="and-64-bit-considerations"><span id="Sec32">32- and 64-bit
Considerations</span></h3>
<p>When binding C functions to the Java programming language, it is
important that the resulting Java code support execution on a 64-bit
platform if the associated native methods are compiled appropriately. In
other words, the public Java API should not change if the underlying C
data types change to another data model such as LP64 (in which longs and
pointers become 64-bit).</p>
<p>GlueGen internally maintains two descriptions of the underlying C
data model: one for 32-bit architectures and one for 64-bit
architectures. These machine descriptions are used when deciding the
mapping between integral C types such as int and long and the
corresponding Java types, as well as when laying out C structs for
access by the Java language. For each autogenerated C struct accessor,
both a 32-bit and 64-bit variant are generated behind the scenes,
ensuring that the resulting Java code will run correctly on both 32-bit
and 64-bit architectures.</p>
<p>When generating the main class containing the bulk of the method
bindings, GlueGen uses the 64-bit machine description to map C data
types to Java data types. This ensures that the resulting code will run
properly on 64-bit platforms. Note that it also generally means that C
<code>long</code>s will be mapped to Java <code>long</code>s, since an
LP64 data model is assumed.</p>
<p>If <a href="#SecOpaque">Opaque directives</a> are used to cause a
given C integer or pointer data type to be mapped directly to a Java
primitive type, care should be taken to make sure that the Java
primitive type is wide enough to hold all of the data even on 64-bit
platforms. Even if the data type is defined in the header file as being
only a 32-bit C integer, if there is a chance that on a 64-bit platform
the same header may define the data type as a 64-bit C integer or long,
the Opaque directive should map the C type to a Java long.</p>
<h3 id="opaque-directives"><span id="SecOpaque">Opaque
Directives</span></h3>
<p>Complex header files may contain declarations for certain data types
that are either too complex for GlueGen to handle or unnecessarily
complex from the standpoint of glue code generation. In these situations
a stub header may be used to declare a suitably compatible typedef for
the data type. An <a href="#Opaque">Opaque</a> directive can be used to
map the resulting typedef to a Java primitive type if it is undesirable
to expose it as a full-blown Java wrapper class.</p>
<p>GlueGen hashes all typedefs internally down to their underlying
primitive type. (This is probably not really correct according to the C
type system, but is correct enough from a glue code generation
standpoint, where if the types are compatible they are considered
equivalent.) This means that if the parser encounters</p>
<pre><code> typedef void* LPVOID;
</code></pre>
<p>then an Opaque directive stating</p>
<pre><code> Opaque long LPVOID
</code></pre>
<p>will cause all <code>void*</code> or <code>LPVOID</code> arguments in
the API to be mapped to Java longs, which is almost never desirable.
Unfortunately, it is not currently possible to distinguish between the
LPVOID typedef and the underlying <code>void*</code> data type in this
situation.</p>
<p>A similar problem occurs for other data types for which Opaque
directives may be desired. For example, a Windows HANDLE equates to a
typedef to <code>void*</code>, but performing this typedef in a stub
header and then adding the Opaque directive</p>
<pre><code> Opaque long HANDLE
</code></pre>
<p>will cause all void* arguments to be exposed as Java longs instead of
Buffers, which is again undesirable. Attempting to work around the
problem by typedef’ing HANDLE to an integral type, as in:</p>
<pre><code> typedef long HANDLE;
</code></pre>
<p>may itself have problems, because GlueGen will assume the two
integral types are compatible and not perform any intermediate casts
between HANDLE and jlong in the autogenerated C code. (When casting
between a pointer type and a JNI integral type such as jlong in C code,
GlueGen automatically inserts casts to convert the pointer first to an
“intptr_t” and then to the appropriate JNI type, in order to silence
compiler warnings and/or errors.)</p>
<p>What is desired is to produce a new type name distinct from all
others but still compatible with the pointer semantics of the original
type. Then an Opaque directive can be used to map the new type name to,
for example, a Java long.</p>
<p>To implement this in the context of the HANDLE example, the following
typedef may be inserted into the stub header:</p>
<pre><code> typedef struct _handle* HANDLE;
</code></pre>
<p>This uses a pointer to an anonymous struct name to produce a new
pointer type. This is legal ANSI C and is supported by GlueGen’s parser
without having seen a declaration for “struct _handle”. Subsequently, an
Opaque directive can be used to map the HANDLE data type to a Java
long:</p>
<pre><code> Opaque long HANDLE
</code></pre>
<p>Now HANDLEs are exposed to Java as longs as desired. A similar
technique is used to expose XIDs on the X11 platform as Java longs.</p>
<h3 id="argument-name-substitution"><span id="SecSubstitution">Argument
Name Substitution</span></h3>
<p>Certain configuration file directives allow the insertion of Java or
C code at various places in the generated glue code, to both eliminate
the need to hand-edit the generated glue code as well as to minimize the
hand-writing of glue code, which sidesteps the GlueGen process. In some
situations the inserted code may reference incoming arguments to compute
some value or perform some operation. Examples of directives supporting
this substitution include <a
href="#ReturnValueCapacity">ReturnValueCapacity</a> and <a
href="#ReturnedArrayLength">ReturnedArrayLength</a>.</p>
<p>The expressions in these directives may contain Java MessageFormat
expressions like <code>{0}</code> which refer to the incoming argument
names to the function. <code>{0}</code> refers to the first incoming
argument.</p>
<p>Strongly-typed C primitive pointers such as <code>int*</code>, which
ordinarily expand to overloaded Java methods taking
e.g. <code>int[]</code> as well as <code>IntBuffer</code>, present a
problem. The expansion to <code>int[] arr</code> also generates an
<code>int arr_offset</code> argument to be able to pass a pointer into
the middle of the array down to C. To allow the same MessageFormat
expression to be used for both cases, the subsitution that occurs when
such a primitive array is referenced is the string
<code>arr, arr_offset</code>; in other words, the subtituted string
contains a comma. This construct may be used in the following way: the
code being manually inserted may itself contain a method call taking
e.g. <code>{3}</code> (the incoming argument index of the primitive
array or buffer). The user should supply two overloaded versions of this
method, one taking a strongly-typed Buffer and one taking e.g. an
<code>int[] arr</code> and <code>int arr_offset</code> argument. The
implementation of <code>RangeCheck</code>s for primitive arrays and
strongly-typed buffers uses this construct.</p>
<p>It should be noted that in the autogenerated C code the offset
argument is expressed in bytes while at the Java level it is expressed
in elements. Most uses of GlueGen will probably not have to refer to the
primitive array arguments in C code so this slight confusion should be
minor.</p>
<h3 id="configuration-file-directives"><span
id="SecConfiguration">Configuration File Directives</span></h3>
<p>In addition to the C headers, GlueGen requires a certain amount of
metadata in the form of configuration files in order to produce its glue
code. There are three basic reasons for this: first, GlueGen must be
informed into which Java classes the C methods are to be bound; second,
there are many configuration options for the generated glue code, and
passing them all on the command line is infeasible; and third, there are
ambiguities in many constructs in the C programming language which must
be resolved before a Java binding can be produced.</p>
<p>The contents of the configuration file are dependent on the class of
emitter specified to GlueGen. Currently there are three built-in emitter
classes: JavaEmitter, which produces a basic, static Java binding of C
functions; ProcAddressEmitter, which extends JavaEmitter by calling the
underlying C functions through function pointers, resulting in more
dynamic behavior and supporting C APIs with optional functionality; and
GLEmitter, which specializes ProcAddressEmitter to support some
OpenGL-specific constructs. The GLEmitter will be ignored in this manual
as it is specialized for JOGL and provides very little additional
functionality beyond the ProcAddressEmitter. The JavaEmitter and
ProcAddressEmitter support many options in their configuration files. As
the ProcAddressEmitter is a subclass of JavaEmitter, all of the
constructs in the JavaEmitter’s configuration files are also legal in
the ProcAddressEmitter’s configuration files.</p>
<p>The configuration files have a very simple line-by-line structure,
and are parsed by a very rudimentary, hand-written parser. Each
non-whitespace and non-comment line (note: comment lines begin with ‘#’)
contains a directive like <code>Package</code>, <code>Style</code> or
<code>JavaClass</code> followed by arguments to that directive. There
are a certain set of directives that are required for any code
generation; others are optional and their omission results in some
default behavior. Directives are case-insensitive.</p>
<p>The following is an exhaustive list of the options currently
supported by each of these emitters’ configuration files. It is
difficult to see exactly how to use the tool based simply on these
descriptions, so the <a href="#Chapter3">examples</a> may be more
helpful in seeing exactly how to structure a configuration file for
proper glue code generation.</p>
<h4 id="javaemitter-configuration"><span id="SecJavaEmitter">JavaEmitter
Configuration</span></h4>
<p>Note that only a very few of the following directives are specified
as being “required” rather than “optional”; these indicate the minimal
directives needed for a valid configuration file to begin to get glue
code to be produced. In general, these are <a
href="#Package">Package</a>, <a href="#ImplPackage">ImplPackage</a>, <a
href="#JavaClass">JavaClass</a>, <a
href="#ImplJavaClass">ImplJavaClass</a>, and <a href="#Style">Style</a>.
Other directives such as <a href="#NioDirectOnly">NioDirectOnly</a> are
required in some circumstances for the glue code to be correct, and some
such as <a href="#ReturnedArrayLength">ReturnedArrayLength</a>, <a
href="#ReturnValueCapacity">ReturnValueCapacity</a>, and <a
href="#ReturnValueLength">ReturnValueLength</a> should be specified in
some situations in order for certain return values to be useful at the
Java level.</p>
<p>The following directives are specified in alphabetical order,
although this is not necessarily the best semantic order.</p>
<p><strong><span id="AccessControl">AccessControl</span></strong><br />
Syntax:
<code>AccessControl [method name] [ PUBLIC | PROTECTED | PRIVATE | PACKAGE_PRIVATE ]</code><br />
(optional) Controls the access control of a certain Java method
corresponding to a C function. The access control of all APIs defaults
to public. This is useful when using the C binding of a particular
function only as one implementation strategy of the real public API and
using <a href="#CustomJavaCode">CustomJavaCode</a> to write the exposed
API. In this case is most useful in conjunction with <a
href="#RenameJavaMethod">RenameJavaMethod</a>.</p>
<p><strong><span
id="ArgumentIsString">ArgumentIsString</span></strong><br />
Syntax: <code>ArgumentIsString [function name] [indices...]</code> where
the first argument index is 0<br />
(optional) For a C function with one or more outgoing <code>char*</code>
(or compatible data type) arguments, indicates that those arguments are
semantically null-terminated C strings rather than arbitrary arrays of
bytes. The generated glue code will be modified to emit those arguments
as java.lang.String objects rather than <code>byte[]</code> or
<code>ByteBuffer</code>.</p>
<p><strong><span
id="ArgumentIsPascalString">ArgumentIsPascalString</span></strong><br />
Syntax:
<code>ArgumentIsPascalString [function name] [indice-tuples...]</code>,
with each tuple being the argument-index for the
‘<code>int length</code>’ and the ‘<code>char* value</code>’ argument
with index 0 for the the first argument<br />
(optional) For a C function with one or more outgoing
‘<code>int length</code>’ and ‘<code>char* value</code>’ (or compatible
data type) arguments, indicates that those arguments are semantically
non-null-terminated Pascal strings rather than null-terminated C strings
or arbitrary arrays of bytes. The generated glue code will be modified
to emit those arguments as java.lang.String objects rather than
<code>byte[]</code> or <code>ByteBuffer</code> as well as dropping the
redundant ‘<code>int length</code>’ argument on the Java side.</p>
<p><strong><span id="ClassJavadoc">ClassJavadoc</span></strong><br />
Syntax: <code>ClassJavadoc [class name] [code...]</code><br />
(optional) Causes the specified line of code to be emitted in the
appropriate place in the generated code to become the per-class Javadoc
for the specified class. By default GlueGen produces no Javadoc for its
generated classes, so this is the mechanism by which a user can emit
Javadoc for these classes. The specified Javadoc undergoes no
transformation by GlueGen, so the initial <code>/**</code> and trailing
<code>*/</code> must be included in the correct place. Each line of
Javadoc is emitted in the order encountered during parsing of the
configuration files. See also : <a
href="#MethodJavadoc">MethodJavadoc</a></p>
<p><strong><span id="CustomCCode">CustomCCode</span></strong><br />
Syntax: <code>CustomCCode [code...]</code><br />
(optional) Causes the specified line of C code to be emitted into the
generated native code for the implementing class. Currently there is no
way (and no real need) to be able to emit custom C code into any other
generated .c file, so the class name in the <a
href="#CustomJavaCode">CustomJavaCode</a> directive is omitted.</p>
<p><strong><span
id="CustomJavaCode">CustomJavaCode</span></strong><br />
Syntax: <code>CustomJavaCode [class name] [code...]</code><br />
(optional) Causes the specified line of Java code to be emitted into the
specified generated Java class. Can be used to emit code into any
generated class: the public interface, the implementing class, the sole
concrete class (in the case of the AllStatic <a
href="#Style">Style</a>), or any of the Java classes corresponding to
referenced C structs in the parsed headers. This usage is somewhat
verbose, and the <a href="#IncludeAs">IncludeAs</a> directive provides a
more concise way of including large bodies of Java code into the
generated code.</p>
<p><strong><span id="CustomJNICode">CustomJNICode</span></strong><br />
Syntax: <code>CustomJNICode [class name] [code...]</code><br />
(optional) Causes the specified line of C code to be emitted into the
generated JNI code related of specified Java class. Can be used to emit
JNI code related of any generated class: the public interface, the
implementing class, the sole concrete class (in the case of the
AllStatic <a href="#Style">Style</a>), or any of the Java classes
corresponding to referenced C structs in the parsed headers. This usage
is somewhat verbose, and the <a href="#IncludeAs">IncludeAs</a>
directive provides a more concise way of including large bodies of C
code into the generated code.</p>
<p><strong><span
id="DelegateImplementation">DelegateImplementation</span></strong>
Syntax:
<code>DelegateImplementation [delegated method name] [method name for original implementation]</code>
(optional) Causes the specified method will not be bind to related C
function but will be bind to second method name provided. The first
method name provided shall be manually delegated by the end user with <a
href="#CustomJavaCode">CustomJavaCode</a> (except if <a
href="#Style">Style</a> is defined with <code>InterfaceOnly</code>
ofc)</p>
<p><strong><span id="EmitStruct">EmitStruct</span></strong><br />
Syntax: <code>EmitStruct [C struct type name]</code><br />
(optional) Forces a Java class to be emitted for the specified C struct.
Normally only those structs referenced directly by the parsed C APIs
have corresponding Java classes emitted.</p>
<p><strong><span
id="GlueGenRuntimePackage">GlueGenRuntimePackage</span></strong><br />
Syntax:
<code>GlueGenRuntimePackage [package name, like com.jogamp.gluegen.runtime]</code><br />
(optional) Changes the package in which the generated glue code expects
to find its run-time helper classes (like Buffers, CPU, StructAccessor).
Defaults to <code>com.jogamp.gluegen.runtime</code> (no quotes). This is
useful if you want to bundle the runtime classes in your application
without the possibility of interfering with other versions elsewhere in
the system.</p>
<p><strong><span
id="ExtendedInterfaceSymbolsIgnore">ExtendedInterfaceSymbolsIgnore</span></strong><br />
Syntax: <code>ExtendedInterfaceSymbolsIgnore [Java file]</code><br />
(optional) Causes all autogenerated Java interface ignore all symbols
from interface declared inside named Java source file.<br />
This directive can be used with <a href="#Extends">Extends</a>
directive.<br />
Cf here for more information : <a
href="../GlueGen_Mapping.html#oo-style-example">GlueGen_Mapping</a></p>
<p><strong><span
id="ExtendedInterfaceSymbolsOnly">ExtendedInterfaceSymbolsOnly</span></strong><br />
Syntax: <code>ExtendedInterfaceSymbolsOnly [Java file]</code><br />
(optional) Causes all autogenerated Java interface generate only symbols
from interface declared inside named Java source file.<br />
This directive can be used with <a href="#Extends">Extends</a>
directive.<br />
Cf here for more information : <a
href="../GlueGen_Mapping.html#oo-style-example">GlueGen_Mapping</a></p>
<p><strong><span
id="ExtendedImplementationSymbolsIgnore">ExtendedImplementationSymbolsIgnore</span></strong><br />
Syntax:
<code>ExtendedImplementationSymbolsIgnore [Java file]</code><br />
(optional) Causes all autogenerated Java classes ignore all symbols from
interface or classe declared inside named Java source file.<br />
This directive can be used with <a href="#ParentClass">ParentClass</a>
directive.<br />
Cf here for more information : <a
href="../GlueGen_Mapping.html#oo-style-example">GlueGen_Mapping</a></p>
<p><strong><span
id="ExtendedImplementationSymbolsOnly">ExtendedImplementationSymbolsOnly</span></strong><br />
Syntax: <code>ExtendedImplementationSymbolsOnly [Java file]</code><br />
(optional) Causes all autogenerated Java classes generate only symbols
from interface or classe declared inside named Java source file.<br />
This directive can be used with <a href="#ParentClass">ParentClass</a>
directive.<br />
Cf here for more information : <a
href="../GlueGen_Mapping.html#oo-style-example">GlueGen_Mapping</a></p>
<p><strong><span
id="ExtendedIntfAndImplSymbolsIgnore">ExtendedIntfAndImplSymbolsIgnore</span></strong><br />
Syntax: <code>ExtendedIntfAndImplSymbolsIgnore [Java file]</code><br />
(optional) Causes all autogenerated Java interface and classes ignore
all symbols from interface or classe declared inside named Java source
file.<br />
This directive can be used with <a href="#Extends">Extends</a> or <a
href="#ParentClass">ParentClass</a> directives.<br />
Cf here for more information : <a
href="../GlueGen_Mapping.html#oo-style-example">GlueGen_Mapping</a></p>
<p><strong><span
id="ExtendedIntfAndImplSymbolsOnly">ExtendedIntfAndImplSymbolsOnly</span></strong><br />
Syntax: <code>ExtendedIntfAndImplSymbolsOnly [Java file]</code><br />
(optional) Causes all autogenerated Java interface and classes generate
only symbols from interface or classe declared inside named Java source
file.<br />
This directive can be used with <a href="#Extends">Extends</a> or <a
href="#ParentClass">ParentClass</a> directives.<br />
Cf here for more information : <a
href="../GlueGen_Mapping.html#oo-style-example">GlueGen_Mapping</a></p>
<p><strong><span id="Extends">Extends</span></strong><br />
Syntax:
<code>Extends [Java interface name] [interface name to extend]</code><br />
(optional) Causes the specified autogenerated Java interface to declare
that it extends another one. This directive may only be applied to
autogenerated interfaces, not concrete classes. For concrete classes,
use <a href="#Implements">Implements</a> directive or <a
href="#ParentClass">ParentClass</a> directive.</p>
<p><strong><span
id="HierarchicalNativeOutput">HierarchicalNativeOutput</span></strong><br />
Syntax: <code>HierarchicalNativeOutput true</code><br />
(optional) If “true”, makes subdirectories for the generated native code
matching the package names of the associated classes. This is typically
not needed (or desired, as it complicates the compilation process for
this native code) and defaults to false.</p>
<p><strong><span id="Ignore">Ignore</span></strong><br />
Syntax: <code>Ignore [regexp]</code><br />
(optional) Ignores one or more functions or data types matching the
regexp argument which are encountered during parsing of the C headers.
By default GlueGen will emit all encountered C functions as well as Java
classes corresponding to all C structs referenced by those functions.
Related directives are <a href="#IgnoreNot">IgnoreNot</a>, <a
href="#Unignore">Unignore</a> and <a
href="#EmitStruct">EmitStruct</a>.</p>
<p><strong><span id="IgnoreField">IgnoreField</span></strong><br />
Syntax: <code>IgnoreField [struct type name] [field name]</code><br />
(optional) Causes the specified field of the specified struct type to be
ignored during code generation, typically because it is too complex for
GlueGen to handle.</p>
<p><strong><span id="IgnoreNot">IgnoreNot</span></strong><br />
Syntax: see <a href="#Ignore">Ignore</a>. (optional) Similar to the <a
href="#Ignore">Ignore</a> directive, but evaluates the negation of the
passed regexp when deciding whether to ignore the given function or data
type. The <a href="#Unignore">Unignore</a> mechanism may be used with
IgnoreNot as well. NOTE: the IgnoreNot mechanism may ultimately turn out
to be superfluous; the authors do not have sufficient experience with
regular expressions to know whether general negation of a regexp is
possible. Feedback in this area would be appreciated.</p>
<p><strong><span id="Implements">Implements</span></strong><br />
Syntax:
<code>Implements [Java class name] [interface name to implement]</code><br />
(optional) Causes the specified autogenerated Java concrete class to
declare that it implements the specified interface. This directive may
only be applied to autogenerated concrete classes, not interfaces. For
interfaces, use the <a href="#Extends">Extends</a> directive.</p>
<p><strong><span id="ImplJavaClass">ImplJavaClass</span></strong><br />
Syntax: <code>ImplJavaClass [class name]</code><br />
(optional) Specifies the name of the typically non-public,
implementation Java class which contains the concrete Java and native
methods for the glue code. If the emission style is AllStatic, there is
no distinction between the public and implementation class and
ImplJavaClass should not be specified. Otherwise, if the ImplJavaClass
is unspecified, it defaults to the JavaClass name plus “Impl”. (If both
are unspecified in this configuration, an error is reported.) See also
<a href="#JavaClass">JavaClass</a>.</p>
<p><strong><span id="ImplPackage">ImplPackage</span></strong><br />
Syntax: <code>ImplPackage [package name]</code><br />
(optional) Specifies the package name into which the implementing class
containing the concrete Java and native methods will be emitted,
assuming an emission style of InterfaceAndImpl or ImplOnly. If
AllStatic, there is no separate implementing class from the public
interface. If the emission style is not AllStatic and the ImplPackage is
not specified, it defaults to the Package plus “.impl”. See also <a
href="#Package">Package</a>.</p>
<p><strong><span id="Import">Import</span></strong><br />
Syntax: <code>Import [package name]</code> (no trailing semicolon)<br />
(optional) Adds an import statement at the top of each generated Java
source file.</p>
<p><strong><span id="ImmutableAccess">ImmutableAccess</span></strong>
Syntax:
<code>ImmutableAccess [C struct or field of C struct (Struct and field are dot separated)]</code>
(optional) Suppress generating setter in the Java code and hence also
reduces the footprint of the generated Java class for such struct. Cf
here for more information : <a
href="../GlueGen_Mapping.html#immutableaccess-symbol">GlueGen_Mapping</a></p>
<p><strong><span id="Include">Include</span></strong><br />
Syntax: <code>Include [filename]</code><br />
(optional) Causes another configuration file to be read at the current
point in parsing the current configuration file. The filename argument
may be either absolute or relative; in the latter case it is specified
relative to the location of the current configuration file.</p>
<p><strong><span id="IncludeAs">IncludeAs</span></strong><br />
Syntax: <code>IncludeAs [prefix tokens] [filename]</code><br />
(optional) Similar to the <a href="#Include">Include</a> directive, but
prepends the specified prefix tokens on to every line of the file to be
read. The last token parsed is the name of the file to be read. This
allows, for example, <a href="#CustomJavaCode">CustomJavaCode</a> to be
stored as Java source rather than in the configuration file; in this
example the configuration file might contain
<code>IncludeAs CustomJavaCode MyClass MyClass-CustomJavaCode.java</code>.</p>
<p><strong><span id="JavaCallbackDef">JavaCallbackDef</span></strong>
Syntax:
<code>JavaCallbackDef [<SetCallbackFunctionName>] [<SetCallback-UserParamIndex>] [<CallbackFunctionType>] [<CallbackFunction-UserParamIndex>] [[<Callback-UserParamClass>] [[<Callback-KeyClass>]]]</code>
(optional) Adds Java interface allow to create Java callback for Java
binding of setCallbackFunctionName. Callback supplied can receive
asynchronous and off-thread natives event (converted on the fly before
passing converted value to Java callback) Must be used with <a
href="#LibraryOnLoad">LibraryOnLoad</a>. Cf here for more information :
<a href="../GlueGen_Mapping.html#java-callback">GlueGen_Mapping</a></p>
<p><strong><span id="JavaCallbackKey">JavaCallbackKey</span></strong>
Syntax:
<code>JavaCallbackKey [<SetCallbackFunctionName>] [<SetCallback-ParamIndex>]* [<CallbackFunctionType>] [<CallbackFunction-ParamIndex>]*]</code>
(optional) Adds callback key for Java binding of
setCallbackFunctionName. Must be used with <a
href="#JavaCallbackDef">JavaCallbackDef</a>. Cf here for more
information : <a
href="../GlueGen_Mapping.html#java-callback">GlueGen_Mapping</a></p>
<p><strong><span id="JavaClass">JavaClass</span></strong><br />
Syntax: <code>JavaClass [class name]</code><br />
(optional / required) Specifies the name of the public,
non-implementation Java class or interface into which the glue code will
be generated. If the emission style is not ImplOnly, the JavaClass
directive is required. See also <a
href="#ImplJavaClass">ImplJavaClass</a>.</p>
<p><strong><span id="JavaEpilogue">JavaEpilogue</span></strong><br />
Syntax: <code>JavaEpilogue [C function name] [code...]</code><br />
(optional) Adds the specified code as an epilogue in the Java method for
the specified C function; this code is run after the underlying C
function has been called via the native method but before any result is
returned. As in the <a
href="#ReturnedArrayLength">ReturnedArrayLength</a> and other
directives, <a href="#SecSubstitution">argument name substitution</a> is
performed on MessageFormat expressions in the specified code. See also
<a href="#JavaPrologue">JavaPrologue</a>.</p>
<p><strong><span id="JavaOutputDir">JavaOutputDir</span></strong><br />
Syntax: <code>JavaOutputDir [directory name]</code><br />
(optional) Specifies the root directory into which the emitted Java code
will be produced. Subdirectories for the packages of the associated Java
classes will be automatically created. If unspecified, defaults to the
current working directory.</p>
<p><strong><span id="JavaPrologue">JavaPrologue</span></strong><br />
Syntax: <code>JavaPrologue [C function name] [code...]</code><br />
(optional) Adds the specified code as a prologue in the Java method for
the specified C function; this code is run before the underlying C
function is called via the native method. As in the <a
href="#ReturnedArrayLength">ReturnedArrayLength</a> and other
directives, <a href="#SecSubstitution">argument name substitution</a> is
performed on MessageFormat expressions in the specified code. See also
<a href="#JavaEpilogue">JavaEpilogue</a>.</p>
<p><strong><span id="LibraryOnLoad">LibraryOnLoad</span></strong><br />
Syntax:
<code>LibraryOnLoad [Library base name] (optional) Indicates to GlueGen to produce native JNI code to handle the</code>JavaVM*`
instance. In particular, it is required when <a
href="../GlueGen_Mapping.html#java-callback">Java™ callback methods are
used</a>. Cf here for more information : <a
href="../GlueGen_Mapping.html#libraryonload-librarybasename-for-jni_onload-">GlueGen_Mapping</a></p>
<p><strong><span
id="ManuallyImplement">ManuallyImplement</span></strong><br />
Syntax: <code>ManuallyImplement [function name]</code><br />
(optional) Indicates to GlueGen to not produce a method into the
implementing class for the specified C function; the user must provide
one via the <a href="#CustomJavaCode">CustomJavaCode</a> directive. If
the emission style is InterfaceAndImpl or InterfaceOnly, a public method
will still be generated for the specified function.</p>
<p><strong><span id="MaxOneElement">MaxOneElement</span></strong><br />
Syntax: <code>MaxOneElement [function name]</code><br />
(optional) Indicates that the specified C function/attribute which
returns a single element instead a ByteBuffer if signature or compatible
type actually returns a pointer like int* but isn’t an array.<br />
Cf here for more information : <a
href="../GlueGen_Mapping.html#gluegen-struct-settings">GlueGen_Mapping</a></p>
<p><strong><span id="MethodJavadoc">MethodJavadoc</span></strong>
Syntax: <code>MethodJavadoc [method name] [code...]</code><br />
(optional) Causes the specified line of code to be emitted in the
appropriate place in the generated code to become the per-method Javadoc
for the specified method. By default GlueGen produces basic Javadoc for
its generated method, notably name of c binding related, so this is the
mechanism by which a user can emit Javadoc for these methods. The
specified Javadoc undergoes no transformation by GlueGen,so the initial
<code>/**</code> and trailing <code>*/</code> must be included in the
correct place. Each line of Javadoc is emitted in the order encountered
during parsing of the configuration files. See also : <a
href="#ClassJavadoc">ClassJavadoc</a></p>
<p><strong><span
id="NativeOutputDir">NativeOutputDir</span></strong><br />
Syntax: <code>NativeOutputDir [directory name]</code><br />
(optional) Specifies the root directory into which the emitted JNI code
will be produced. If unspecified, defaults to the current working
directory. See also <a
href="#HierarchicalNativeOutput">HierarchicalNativeOutput</a>.</p>
<p><strong><span id="NioDirectOnly">NioDirectOnly</span></strong><br />
Syntax: <code>NioDirectOnly [function name|__ALL__]</code><br />
(required when necessary) When passing a pointer down to a C API, it is
semantically undefined whether the underlying C code expects to treat
that pointer as a persistent pointer, living past the point of return of
the function call, or whether the pointer is used only during the
duration of the function call. For APIs taking C primitive pointers such
as <code>void*</code>, <code>float*</code>, etc., GlueGen will typically
generate up to two overloaded Java methods, one taking a
<code>Buffer</code> or <code>Buffer</code> subclass such as
<code>FloatBuffer</code>, and one taking a primitive array such as
<code>float[]</code>. (In the case of <code>void*</code> outgoing
arguments, GlueGen produces only one variant taking a Buffer.) Normally
the generated glue code accepts either a “direct” or non-“direct” buffer
(according to the New I/O APIs) as argument. However, if the semantics
of the C function are that it either expects to hold on to this pointer
past the point of the function call, or if it can block while holding on
to the pointer, the <code>NioDirectOnly</code> directive
<strong>must</strong> be specified for this C function in order for the
generated glue code to be correct. Failing to observe this requirement
may cause JVM hangs or crashes. See also <a
href="#NIOOnly">NIOOnly</a>.</p>
<p><strong><span id="NIOOnly">NIOOnly</span></strong> Syntax:
<code>NIOOnly [function name|__ALL__]</code> (optional) Cause fonction
specified (or all) should only create a <code>java.nio</code> variant,
and no array variants, for <code>void*</code> and other C primitive
pointers. NIO only still allows usage of array backed not direct
Buffers. See also : <a href="#NioDirectOnly">NioDirectOnly</a>, same
effect but disallow usage of array backed not direct Buffers.</p>
<p><strong><span id="Opaque">Opaque</span></strong><br />
Syntax:
<code>Opaque [Java primitive data type] [C data type]</code><br />
(optional) Causes a particular C data type to be exposed in opaque form
as a Java primitive type. This is most useful for certain pointer types
for which it is not desired to generate full Java classes but instead
expose them to Java as e.g. <code>long</code>s. It is also useful for
forcing certain integral C data types to be exposed as
e.g. <code>long</code> to Java to ensure 64-bit cleanliness of the
generated glue code. See the <a href="#Chapter3">examples</a>. The C
data type may be a multiple-level pointer type; for example
<code>Opaque long void**</code>. Note that it is not currently supported
to make a given data type opaque for just a few functions; the Opaque
directive currently applies to all C functions in the headers being
parsed. This means that sweeping Opaque declarations like
<code>Opaque long void*</code> will likely have unforseen and
undesirable consequences.</p>
<p><strong><span id="Package">Package</span></strong><br />
Syntax: <code>Package [package name]</code> (no trailing
semicolon)<br />
(optional / required) Specifies the package into which the public
interface or class for the autogenerated glue code will be generated.
Required whenever the emission style is not ImplOnly. See also <a
href="#ImplPackage">ImplPackage</a>.</p>
<p><strong><span id="ParentClass">ParentClass</span></strong><br />
Syntax:
<code>ParentClass [Java class name] [class name to extend]</code><br />
(optional) Causes the specified autogenerated Java classe to declare
that it extends another one. This directive may only be applied to
autogenerated classes, not interface. For interfaces, use the <a
href="#Extends">Extends</a> directive.</p>
<p><strong><span id="RangeCheck">RangeCheck</span></strong><br />
Syntax:
<code>RangeCheck [C function name] [argument number] [expression]</code><br />
(optional) Causes a range check to be performed on the specified array
or Buffer argument of the specified autogenerated Java method. This
range check ensures, for example, that a certain number of elements are
remaining in the passed Buffer, knowing that the underlying C API will
access no more than that number of elements. For range checks that
should be expressed in terms of a number of bytes rather than a number
of elements, see the <a href="#RangeCheckBytes">RangeCheckBytes</a>
directive. As in the <a
href="#ReturnedArrayLength">ReturnedArrayLength</a> and other
directives, <a href="#SecSubstitution">argument name substitution</a> is
performed on MessageFormat expressions.</p>
<p><strong><span
id="RangeCheckBytes">RangeCheckBytes</span></strong><br />
Syntax:
<code>RangeCheckBytes [C function name] [argument number] [expression]</code><br />
(optional) Same as the <a href="#RangeCheck">RangeCheck</a> directive,
but the specified expression is treated as a minimum number of bytes
remaining rather than a minimum number of elements remaining. This
directive may not be used with primitive arrays.</p>
<p><strong><span
id="RenameJavaMethod">RenameJavaMethod</span></strong><br />
Syntax: <code>RenameJavaMethod [from name] [to name]</code><br />
(optional) Causes the specified C function to be emitted under a
different name in the Java binding. This is most useful in conjunction
with the <a href="#AccessControl">AccessControl</a> directive when the C
function being bound to Java is only one potential implementation of the
public API, or when a considerable amount of Java-side custom code is
desired to wrap the underlying C native method entry point.</p>
<p><strong><span id="RenameJavaSymbol">RenameJavaSymbol</span></strong>
Syntax: <code>RenameJavaSymbol [from name] [to name]</code> (optional)
Cause the specified C symbol to be emitted under a different name in the
Java binding. (Like <a
href="#RenameJavaMethod">RenameJavaMethod</a>)</p>
<p><strong><span
id="RenameJavaType">RenameJavaType</span></strong><br />
Syntax: <code>RenameJavaType [from name] [to name]</code><br />
(optional) Causes the specified C struct to be exposed as a Java class
under a different name. This only applies to autogenerated classes
corresponding to C structs encountered during glue code generation; full
control is provided over the name of the top-level classes associated
with the set of C functions via the <a href="#JavaClass">JavaClass</a>
and <a href="#ImplJavaClass">ImplJavaClass</a> directives.</p>
<p><strong><span
id="RelaxedEqualSemanticsTest">RelaxedEqualSemanticsTest</span></strong>
Syntax: <code>RelaxedEqualSemanticsTest [true|false]</code> (optional)
Define if binding must shall attempt to perform a relaxed semantic
equality test, e.g. skip the <code>const</code> and
<code>volatile</code> qualifier or not (by default).</p>
<p><strong><span
id="ReturnedArrayLength">ReturnedArrayLength</span></strong><br />
Syntax: <code>ReturnedArrayLength [C function name] [expression]</code>
where <code>expression</code> is a legal Java expression with
MessageFormat specifiers such as “{0}”. These specifiers will be
replaced in the generated glue code with the incoming argument names
where the first argument to the method is numbered 0. See the section on
<a href="#SecSubstitution">argument name substitution</a>.<br />
(optional) For a function returning a compound C pointer type such as an
<code>XVisualInfo*</code>, indicates that the returned pointer is to be
treated as an array and specifies the length of the returned array as a
function of the arguments passed to the function. Note that this
directive differs subtly from <a
href="#ReturnValueCapacity">ReturnValueCapacity</a> and
ReturnValueLength. It is also sometimes most useful in conjunction with
the <a
href="#TemporaryCVariableDeclaration">TemporaryCVariableDeclaration</a>
and TemporaryCVariableAssignment directives.</p>
<p><strong><span id="ReturnsOpaque">ReturnsOpaque</span></strong>
Syntax: <code>ReturnsOpaque [function name]</code><br />
(optional) Indicates that the specified C function which returns an
opaque pointer, so return value of method are exposed as
<code>long</code> in Java generated API. Cf here for more information
about opaque pointers : <a href="#Opaque">Opaque</a></p>
<p><strong><span id="ReturnsString">ReturnsString</span></strong><br />
Syntax: <code>ReturnsString [function name]</code><br />
(optional) Indicates that the specified C function which returns a
<code>char*</code> or compatible type actually returns a null-terminated
C string which should be exposed as a java.lang.String. NOTE: currently
does not properly handle the case where this storage needs to be freed
by the end user. In these situations the data should be returned as a
direct ByteBuffer, the ByteBuffer converted to a String using custom
Java code, and the ByteBuffer freed manually using another function
bound to Java.</p>
<p><strong><span
id="ReturnsStringOnly">ReturnsStringOnly</span></strong><br />
Syntax: <code>ReturnsStringOnly [function name]</code><br />
(optional) Like the <a href="#ReturnsString">ReturnsString</a>
instruction, but without the classic getters and setters with
ByteBuffer.<br />
Cf here for more information : <a
href="../GlueGen_Mapping.html#gluegen-struct-settings">GlueGen_Mapping</a></p>
<p><strong><span
id="ReturnValueCapacity">ReturnValueCapacity</span></strong><br />
Syntax:
<code>ReturnValueCapacity [C function name] [expression]</code><br />
(optional) Specifies the capacity of a java.nio <code>Buffer</code> or
subclass wrapping a C primitive pointer such as <code>char*</code> or
<code>float*</code> being returned from a C function. Typically
necessary in order to properly use such pointer return results from
Java. As in the <a href="#ReturnedArrayLength">ReturnedArrayLength</a>
directive, <a href="#SecSubstitution">argument name substitution</a> is
performed on MessageFormat expressions.</p>
<p><strong><span
id="ReturnValueLength">ReturnValueLength</span></strong><br />
Syntax:
<code>ReturnValueLength [C function name] [expression]</code><br />
(optional) Specifies the length of a returned array of pointers,
typically to C structs, from a C function. This differs from the <a
href="#ReturnedArrayLength">ReturnedArrayLength</a> directive in the
pointer indirection to the array elements. The <a
href="#ReturnedArrayLength">ReturnedArrayLength</a> directive handles
slicing up of a linear array of structs, while the ReturnValueLength
directive handles boxing of individual elements of the array (which are
pointers) in to the Java class which wraps that C struct type. See the
<a href="#Chapter3">examples</a> for a concrete example of usage. As in
the <a href="#ReturnedArrayLength">ReturnedArrayLength</a> directive, <a
href="#SecSubstitution">argument name substitution</a> is performed on
MessageFormat expressions.</p>
<p><strong><span
id="RuntimeExceptionType">RuntimeExceptionType</span></strong><br />
Syntax: <code>RuntimeExceptionType [class name]</code><br />
(optional) Specifies the class name of the exception type which should
be thrown when run-time related exceptions occur in the generated glue
code, for example if a non-direct Buffer is passed to a method for which
<a href="#NioDirectOnly">NioDirectOnly</a> was specified. Defaults to
<code>RuntimeException</code>.</p>
<p><strong><span
id="StructMachineDataInfoIndex">StructMachineDataInfoIndex</span></strong>
Syntax:
<code>StructMachineDataInfoIndex [C struct type name] [code...]</code>
(optional) Specify <code>mdIdx</code> i.e. the index of the static
MachineDescriptor index for structs. If undefined, code generation uses
the default expression:
<code>private static final int mdIdx = MachineDataInfoRuntime.getStatic().ordinal();</code></p>
<p><strong><span id="StructPackage">StructPackage</span></strong><br />
Syntax: <code>StructPackage [C struct type name] [package name]</code>.
Package name contains no trailing semicolon.<br />
(optional) Indicates that the specified Java class corresponding to the
specified C struct should be placed in the specified package. By
default, these autogenerated Java classes corresponding to C structs are
placed in the main package (that defined by <a
href="#PackageName">PackageName</a>).</p>
<p><strong><span id="Style">Style</span></strong><br />
Syntax:
<code>Style [ AllStatic | InterfaceAndImpl |InterfaceOnly | ImplOnly ]</code><br />
(optional) Defines how the Java API for the parsed C headers is
structured. If AllStatic, one concrete Java class will be generated
containing static methods corresponding to the C entry points. If
InterfaceAndImpl, a public Java interface will be generated into the <a
href="#Package">Package</a> with non-static methods corresponding to the
C functions, and an “implementation” concrete Java class implementing
this interface will be generated into the <a
href="#ImplPackage">ImplPackage</a>. If InterfaceOnly, the
InterfaceAndImpl code generation style will be followed, but only the
interface will be generated. If ImplOnly, the InterfaceAndImpl code
generation style will be followed, but only the concrete implementing
class will be generated. The latter two options are useful when
generating a public API in which certain operations are unimplemented on
certain platforms; platform-specific implementation classes can be
generated which implement or leave unimplemented various parts of the
API.</p>
<p><strong><span id="TagNativeBinding">TagNativeBinding</span></strong>
Syntax: <code>TagNativeBinding [true|false]</code> (optional) Define if
the comment of a native method binding will include a
<code>@native</code> tag to allow taglets to augment the javadoc with
additional information regarding the mapped C function. Defaults to
false.</p>
<p><strong><span
id="TemporaryCVariableAssignment">TemporaryCVariableAssignment</span></strong><br />
Syntax:
<code>TemporaryCVariableAssignment [C function name][code...]</code><br />
(optional) Inserts a C variable assignment declared using the <a
href="#TemporaryCVariableDeclaration">TemporaryCVariableDeclaration</a>
directive in to the body of a particular autogenerated native method.
The assignment is performed immediately after the call to the underlying
C function completes. This is typically used in conjunction with the <a
href="#ReturnValueCapacity">ReturnValueCapacity</a> or <a
href="#ReturnValueLength">ReturnValueLength</a> directives to capture
the size of a returned C buffer or array of pointers. See the <a
href="#Chapter3">examples</a> for a concrete example of usage of this
directive. Note that unlike, for example, the <a
href="#ReturnedArrayLength">ReturnedArrayLength</a> directive, no
substitution is performed on the supplied code, so the user must
typically have previously looked at the generated code and seen what
work needed to be done and variables needed to be examined at exactly
that line.</p>
<p><strong><span
id="TemporaryCVariableDeclaration">TemporaryCVariableDeclaration</span></strong><br />
Syntax:
<code>TemporaryCVariableDeclaration [C function name] [code...]</code><br />
(optional) Inserts a C variable declaration in to the body of a
particular autogenerated native method. This is typically used in
conjunction with the <a
href="#TemporaryCVariableAssignment">TemporaryCVariableAssignment</a>
and <a href="#ReturnValueCapacity">ReturnValueCapacity</a> or <a
href="#ReturnValueLength">ReturnValueLength</a> directives to capture
the size of a returned C buffer or array of pointers. See the <a
href="#Chapter3">examples</a> for a concrete example of usage of this
directive.</p>
<p><strong><span id="Unignore">Unignore</span></strong><br />
Syntax: <code>Unignore [regexp]</code><br />
(optional) Removes a previously-defined <a href="#Ignore">Ignore</a>
directive. This is useful when one configuration file includes another
and wishes to disable some of the Ignores previously specified.</p>
<p><strong><span id="Unimplemented">Unimplemented</span></strong><br />
Syntax: <code>Unimplemented [regexp]</code><br />
(optional) Causes the binding for the functions matching the passed
regexp to have bodies generated which throw the stated <a
href="#RuntimeExceptionType">RuntimeExceptionType</a> indicating that
this function is unimplemented. This is most useful when an API contains
certain functions that are not supported on all platforms and there are
multiple implementing classes being generated, one per platform.</p>
<p><strong><span
id="UnsupportedExceptionType">UnsupportedExceptionType</span></strong>
Syntax <code>UnsupportedExceptionType [type]</code> (optional) Change
type of exception thrown by binding when some method are unsupported (if
native method are missing in ABI for example). Default exception type
are (java.lang.)UnsupportedOperationException.</p>
<h4 id="procaddressemitter-configuration"><span
id="SecProcAddressEmitter">ProcAddressEmitter Configuration</span></h4>
<p>The ProcAddressEmitter is a subclass of the core JavaEmitter which
knows how to call C functions through function pointers. In particular,
the ProcAddressEmitter detects certain constructs in C header files
which imply that the APIs are intended to be called through function
pointers, and generates the glue code appropriately to support that.</p>
<p>The ProcAddressEmitter detects pairs of functions and function
pointer typedefs in a set of header files. If it finds a matching pair,
it converts the glue code emission style for that API to look for the
function to call in an autogenerated table called a ProcAddressTable
rather than linking the autogenerated JNI code directly to the function.
It then changes the calling convention of the underlying native method
to pass the function pointer from Java down to C, where the
call-through-function-pointer is performed.</p>
<p>The ProcAddressEmitter discovers the function and function pointer
pairs by being informed of the mapping between their names by the user.
In the OpenGL and OpenAL libraries, there are fairly simple mappings
between the functions and function pointers. For example, in the OpenGL
<code>glext.h</code> header file, one may find the following pair:</p>
<pre><code> GLAPI void APIENTRY glFogCoordf (GLfloat);
...
typedef void (APIENTRYP PFNGLFOGCOORDFPROC) (GLfloat coord);
</code></pre>
<p>Therefore the mapping rule between the function name and the function
pointer typedef for the OpenGL extension header file is “PFN +
Uppercase(funcname) + PROC”. Similarly, in the OpenAL 1.1 header files,
one may find the following pair:</p>
<pre><code> AL_API void AL_APIENTRY alEnable( ALenum capability );
...
typedef void (AL_APIENTRY *LPALENABLE)( ALenum capability );
</code></pre>
<p>Therefore the mapping rule between the function name and the function
pointer typedef for the OpenAL header files is “LP +
Uppercase(funcname)”.</p>
<p>These are the two principal function pointer-based APIs toward which
the GlueGen tool has currently been applied. It may turn out to be that
this simple mapping heuristic is insufficient, in which case it will
need to be extended in a future version of the GlueGen tool.</p>
<p>Note that it is currently the case that in order for the
ProcAddressEmitter to notice that a given function should be called
through a function pointer, it must see both the function prototype as
well as the function pointer typedef. Some headers, in particular the
OpenAL headers, have their <code>#ifdefs</code> structured in such a way
that either the declaration or the typedef is visible, but not both
simultaneously. Because the <a href="#SecJCPP">JCPP</a> C preprocessor
GlueGen uses obeys <code>#ifdefs</code>, it is in a situation like this
that the headers would have to be modified to allow GlueGen to see both
declarations.</p>
<p>The following directives are specified in alphabetical order,
although this is not necessarily the best semantic order. The
ProcAddressEmitter also accepts all of the directives supported by the
JavaEmitter. The required directives are <a
href="#GetProcAddressTableExpr">GetProcAddressTableExpr</a> and <a
href="#ProcAddressNameExpr">ProcAddressNameExpr</a>.</p>
<p><strong><span
id="EmitProcAddressTable">EmitProcAddressTable</span></strong><br />
Syntax: <code>EmitProcAddressTable [true | false]</code><br />
(optional) Indicates whether to emit the ProcAddressTable during glue
code generation. Defaults to false.</p>
<p><strong><span
id="ForceProcAddressGen">ForceProcAddressGen</span></strong><br />
Syntax: <code>ForceProcAddressGen [function name]</code><br />
(optional) Indicates that a ProcAddressTable entry should be produced
for the specified function even though it does not have an associated
function pointer typedef in the header. This directive does not
currently cause the autogenerated Java and C code to change to
call-through-function-pointer style, which should probably be considered
a bug. (FIXME)</p>
<p><strong><span
id="GetProcAddressTableExpr">GetProcAddressTableExpr</span></strong><br />
Syntax: <code>GetProcAddressTableExpr [expression]</code><br />
(required) Defines the Java code snippet used by the generated glue code
to fetch the ProcAddressTable containing the function pointers for the
current API. It is up to the user to decide where to store the
ProcAddressTable. Common places for it include in an instance field of
the implementing class, in an associated object with which there is a
one-to-one mapping, or in a static field of another class accessed by a
static method. In the JOGL project, for example, each GLImpl instance
has an associated GLContext in an instance field called “_context”, so
the associated directive is
<code>GetProcAddressTableExpr _context.getGLProcAddressTable()</code>.
In the JOAL project, the ProcAddressTables are currently held in a
separate class accessed via static methods, so one of the associated
directives is
<code>GetProcAddressTableExpr ALProcAddressLookup.getALCProcAddressTable()</code>.</p>
<p><strong><span
id="ProcAddressNameExpr">ProcAddressNameExpr</span></strong><br />
Syntax: <code>ProcAddressNameExpr [expression]</code><br />
(required) Defines the mapping from function name to function pointer
typedef to be able to properly identify this function as needing
call-through-function-pointer semantics. The supplied expression uses a
set of simple commands to describe certain operations on the function
name:</p>
<ul>
<li><code>$UpperCase(arg)</code> converts the argument to uppercase.
“UpperCase” is case-insensitive.</li>
<li><code>$LowerCase(arg)</code> converts the argument to lowercase.
“LowerCase” is case-insensitive.</li>
<li><code>{0}</code> represents the name of the function.</li>
<li>Any other string represents a constant string.</li>
<li>Concatenation is implicit.</li>
</ul>
<p>The corresponding ProcAddressNameExpr for the OpenGL extension
functions as described at the start of this section is
<code>PFN $UPPERCASE({0}) PROC</code>. The ProcAddressNameExpr for the
OpenAL functions as described at the start of this section is
<code>LP $UPPERCASE({0})</code>.</p>
<p><strong><span
id="ProcAddressTableClassName">ProcAddressTableClassName</span></strong><br />
Syntax: <code>ProcAddressTableClassName [class name]</code><br />
(optional) Specifies the class name into which the table containing the
function pointers will be emitted. Defaults to “ProcAddressTable”.</p>
<p><strong><span
id="ProcAddressTablePackage">ProcAddressTablePackage</span></strong><br />
Syntax:
<code>ProcAddressTablePackage [package name] (no trailing semicolon)</code>
(optional) Specifies the package into which to produce the
ProcAddressTable for the current set of APIs. Defaults to the
implementation package specified by the <a
href="#ImplPackage">ImplPackage</a> directive.</p>
<p><strong><span
id="SkipProcAddressGen">SkipProcAddressGen</span></strong> Syntax:
<code>SkipProcAddressGen [function name]</code> (optional) Indicates
that the default behavior of call-through-function-pointer should be
skipped for this function despite the fact that it has an associated
function pointer typedef in the header.</p>
<h2 id="chapter-3---configuration-file-examples"><span
id="Chapter3">Chapter 3 - Configuration File Examples</span></h2>
<h3 id="simplest-possible-example"><span id="SecSimplest">Simplest
possible example</span></h3>
<p>Files:</p>
<ul>
<li><a href="example1/function.c">function.c</a></li>
<li><a href="example1/function.h">function.h</a></li>
<li><a href="example1/function.cfg">function.cfg</a></li>
<li><a href="example1/gen.sh">gen.sh</a></li>
</ul>
<p>This example shows the simplest possible usage of GlueGen; a single
routine taking as arguments and returning only primitive types. The
signature of the C function we are interested in binding is</p>
<pre><code> int one_plus(int a);
</code></pre>
<p>To bind this function to Java, we only need a configuration file with
very basic settings, indicating the style of glue code emission, the
package and class into which the glue code will be generated, and the
output directories for the Java and native code. The contents of the
configuration file are as follows:</p>
<pre><code> Package testfunction
Style AllStatic
JavaClass TestFunction
JavaOutputDir gensrc/java
NativeOutputDir gensrc/native
</code></pre>
<p>GlueGen can then be invoked with approximately the following command
line:</p>
<pre><code> java -cp gluegen.jar:antlr.jar com.jogamp.gluegen.GlueGen \
-I. -Ecom.jogamp.gluegen.JavaEmitter -Cfunction.cfg function.h
</code></pre>
<p>The resulting Java and native code needs to be compiled, and the
application needs to load the native library for the Java binding before
attempting to invoke the native method by calling
<code>System.load()</code> or <code>System.loadLibrary()</code>.</p>
<h3 id="arrays-and-buffers"><span id="SecArrays">Arrays and
buffers</span></h3>
<p>Files:</p>
<ul>
<li><a href="example2/function.c">function.c</a></li>
<li><a href="example2/function.h">function.h</a></li>
<li><a href="example2/function.cfg">function.cfg</a></li>
<li><a href="example2/gen.sh">gen.sh</a></li>
</ul>
<p>This example shows how C primitive arrays are bound to Java. The
header file contains three functions to bind:</p>
<pre><code> float process_data(float* data, int n);
void set_global_data(float* data);
float process_global_data(int n);
</code></pre>
<p>The semantics of <code>process_data</code> are that it takes in a
pointer to a set of primitive <code>float</code> values and the number
of elements in the array and performs some operation on them, returning
a floating-point value as the result. Afterward the passed data is no
longer referenced.</p>
<p><code>set_global_data</code>, on the other hand, takes a pointer to
the data and stores it persistently in the C code.
<code>process_global_data</code> then accepts as argument the number of
elements to process from the previously-set global data, performs this
processing and returns a result. The global data may be accessed again
afterward. As an example, these kinds of semantics are used in certain
places in the OpenGL API.</p>
<p>From a Java binding standpoint, <code>process_data</code> may accept
data stored either inside the Java heap (in the form of a
<code>float[]</code> or non-direct <code>FloatBuffer</code>) or outside
the Java heap (in the form of a direct <code>FloatBuffer</code>),
because it does not access the data after the function call has
completed and therefore would not be affected if garbage collection
moved the data after the function call was complete. However,
<code>set_global_data</code> can cause the passed data to be accessed
after the function call is complete, if <code>process_global_data</code>
is called. Therefore the data passed to <code>set_global_data</code> may
not reside in the Java garbage-collected heap, but must reside outside
the heap in the form of a direct <code>FloatBuffer</code>.</p>
<p>It is straightforward to take into account these differences in
semantics in the configuration file using the <a
href="#NioDirectOnly">NioDirectOnly</a> directive:</p>
<pre><code> # The semantics of set_global_data imply that
# only direct Buffers are legal
NioDirectOnly set_global_data
</code></pre>
<p>Note the differences in the generated Java-side overloadings for the
two functions:</p>
<pre><code> public static void process_data(java.nio.FloatBuffer data, int n) {...}
public static void process_data(float[] data, int data_offset, int n) {...}
public static void set_global_data(java.nio.FloatBuffer data) {...}
</code></pre>
<p>No overloading is produced for <code>set_global_data</code> taking a
<code>float[]</code>, as it can not handle data residing in the Java
heap. Further, the generated glue code will verify that any
<code>FloatBuffer</code> passed to this routine is direct, throwing a
<code>RuntimeException</code> if not. The type of the exception thrown
in this and other cases may be changed with the <a
href="#RuntimeExceptionType">RuntimeExceptionType</a> directive.</p>
<h3 id="string-handling"><span id="SecString">String
handling</span></h3>
<p>Files:</p>
<ul>
<li><a href="example3/function.h">function.h</a></li>
<li><a href="example3/function.cfg">function.cfg</a></li>
<li><a href="example3/gen.sh">gen.sh</a></li>
</ul>
<p>This example shows how to pass and return C strings. The functions
involved are a bit contrived, as nobody would ever need to bind the C
library’s string handling routines to Java, but they do illustrate
situations in which Java strings might need to be passed to C and C
strings returned to Java. As an example, both styles of function are
present in the OpenGL and OpenAL APIs.</p>
<p>The included source code exposes two functions to Java:</p>
<pre><code> size_t strlen(const char* str);
char* strstr(const char* str1, const char* str2);
</code></pre>
<p>Note that we might just as easily parse the C standard library’s
<code>string.h</code> header file to pick up these function
declarations. However for the purposes of this example it is easier to
extract just the functions we need.</p>
<p>Note that the <a href="example3/function.h">function.h</a> header
file contains a typedef for <code>size_t</code>. This is needed because
GlueGen does not inherently know about this data type. An equivalent
data type for the purposes of this example is <code>int</code>, so we
choose to tell GlueGen to use that data type in place of
<code>size_t</code> while generating glue code.</p>
<p>The following directive in the configuration file tells GlueGen that
<code>strlen</code> takes a string as argument 0 (the first
argument):</p>
<pre><code> ArgumentIsString strlen 0
</code></pre>
<p>The following directive tells GlueGen that <code>strstr</code> takes
two strings as its arguments:</p>
<pre><code> ArgumentIsString strstr 0 1
</code></pre>
<p>Finally, the following directive tells GlueGen that
<code>strstr</code> returns a string instead of an array of bytes:</p>
<pre><code> ReturnsString strstr
</code></pre>
<p>We also use the <a href="#CustomCCode">CustomCCode</a> directive to
cause the <code>string.h</code> header file to be #included in the
generated glue code:</p>
<pre><code> CustomCCode /* Include string.h header */
CustomCCode #include <string.h>
</code></pre>
<p>Now the bindings of these two functions to Java look as expected:</p>
<pre><code> public static native int strlen(java.lang.String str);
public static native java.lang.String strstr(java.lang.String str1, java.lang.String str2);
</code></pre>
<p>Note that the <a href="#ReturnsString">ReturnsString</a> directive
does not currently correctly handle the case where the
<code>char*</code> returned from C needs to be explicitly freed. As an
example, a binding of the C function <code>strdup</code> using a
ReturnsString directive would cause a C heap memory leak.</p>
<h3 id="memory-allocation"><span id="SecMemory">Memory
allocation</span></h3>
<p>Files:</p>
<ul>
<li><a href="example4/function.c">function.c</a></li>
<li><a href="example4/function.h">function.h</a></li>
<li><a href="example4/function.cfg">function.cfg</a></li>
<li><a href="example4/gen.sh">gen.sh</a></li>
</ul>
<p>This example shows how memory allocation is handled when binding C to
Java. It gives the example of a custom memory allocator being bound to
Java; this is a construct that at least at one point was present in
OpenGL in the NV_vertex_array_range extension.</p>
<p>The two functions we are exposing to Java are as follows:</p>
<pre><code> void* custom_allocate(int num_bytes);
void custom_free(void* data);
</code></pre>
<p>The Java-side return type of <code>custom_allocate</code> will
necessarily be a <code>ByteBuffer</code>, as that is the only useful way
of interacting with arbitrary memory produced by C. The question is how
to inform the glue code generator of the size of the returned sequence
of memory. The semantics of <code>custom_allocate</code> are obvious to
the programmer; the incoming <code>num_bytes</code> argument specifies
the amount of returned memory. We tell GlueGen this fact using the <a
href="#ReturnValueCapacity">ReturnValueCapacity</a> directive:</p>
<pre><code> # The length of the returned ByteBuffer from custom_allocate is
# specified as the argument
ReturnValueCapacity custom_allocate {0}
</code></pre>
<p>Note that we name incoming argument 0 with the MessageFormat
specifier “{0}” rather than the explicit name of the parameter
(“num_bytes”) for generality, in case the header file is changed
later.</p>
<p>Because <code>custom_free</code> will only ever receive Buffers
produced by custom_allocate, we use the <a
href="#NioDirectOnly">NioDirectOnly</a> directive to prevent accidental
usage with the wrong kind of Buffer:</p>
<pre><code> # custom_free will only ever receive a direct Buffer
NioDirectOnly custom_free
</code></pre>
<p>The generated Java APIs for these functions are as follows:</p>
<pre><code> public static java.nio.ByteBuffer custom_allocate(int num_bytes) {...}
public static void custom_free(java.nio.Buffer data) {...}
</code></pre>
<h3 id="ingoing-and-outgoing-structs"><span id="SecStructs">Ingoing and
outgoing structs</span></h3>
<p>Files:</p>
<ul>
<li><a href="example5/function.c">function.c</a></li>
<li><a href="example5/function.h">function.h</a></li>
<li><a href="example5/function.cfg">function.cfg</a></li>
<li><a href="example5/gen.sh">gen.sh</a></li>
</ul>
<p>This example shows how GlueGen provides access to C structs and
supports both passing them to and returning them from C functions. The
header file defines a sample data structure that might describe the bit
depth of a given screen:</p>
<pre><code> typedef struct {
int redBits;
int greenBits;
int blueBits;
} ScreenInfo;
</code></pre>
<p>Two functions are defined which take and return this data type:</p>
<pre><code> ScreenInfo* default_screen_depth();
void set_screen_depth(ScreenInfo* info);
</code></pre>
<p>The semantics of <code>default_screen_depth()</code> are that it
returns a pointer to some static storage which does not need to be
freed, which describes the default screen depth.
<code>set_screen_depth()</code> is a hypothetical function which would
take a newly-allocated <code>ScreenInfo</code> and cause the primary
display to switch to the specified bit depth.</p>
<p>The only additional information we need to tell GlueGen, beyond that
in the header file, is how much storage is returned from
<code>default_screen_depth()</code>. Note the semantic ambiguity, where
it might return a pointer to a single <code>ScreenInfo</code> or a
pointer to an array of <code>ScreenInfo</code>s. We tell GlueGen that
the return value is a single value with the <a
href="#ReturnValueCapacity">ReturnValueCapacity</a> directive, similarly
to the <a href="#SecMemory">memory allocation</a> example above:</p>
<pre><code> # Tell GlueGen that default_screen_depth() returns a pointer to a
# single ScreenInfo
ReturnValueCapacity default_screen_depth sizeof(ScreenInfo)
</code></pre>
<p>Note that if <code>default_screen_depth</code> had returned
newly-allocated storage, it would be up to the user to expose a
<code>free()</code> function to Java and call it when necessary.</p>
<p>GlueGen automatically generates a Java-side <code>ScreenInfo</code>
class which supports not only access to any such objects returned from
C, but also allocation of new <code>ScreenInfo</code> structs which can
be passed (persistently) down to C. The Java API for the ScreenInfo
class looks like this:</p>
<pre><code> public abstract class ScreenInfo {
public static ScreenInfo create();
public abstract ScreenInfo redBits(int val);
public abstract int redBits();
...
}
</code></pre>
<p>The <code>create()</code> method allocates a new ScreenInfo struct
which may be passed, even persistently, out to C. Its C-heap storage
will be automatically reclaimed when the Java-side ScreenInfo object is
no longer reachable, as it is backed by a direct New I/O
<code>ByteBuffer</code>. The fields of the struct are exposed as methods
which supply both getters and setters.</p>
<h3 id="returned-arrays-of-structs"><span id="SecStructArrays">Returned
arrays of structs</span></h3>
<p>Files:</p>
<ul>
<li><a href="example6/function.h">function.h</a></li>
<li><a href="example6/function.cfg">function.cfg</a></li>
<li><a href="example6/gen.sh">gen.sh</a></li>
</ul>
<p>This example, taken from JOGL’s X11 binding, illustrates how to
return an array of structs from C to Java. The
<code>XGetVisualInfo</code> function from the X library has the
following signature:</p>
<pre><code> XVisualInfo *XGetVisualInfo(
Display* display,
long vinfo_mask,
XVisualInfo* vinfo_template,
int* nitems_return
);
</code></pre>
<p>Note that the <code>XVisualInfo</code> data structure itself contains
many elements, including a pointer to the current visual. We use the
following trick in the header file to cause GlueGen to treat the
<code>Display*</code> in the above signature as well as the
<code>Visual*</code> in the <code>XVisualInfo</code> as opaque
pointers:</p>
<pre><code> typedef struct {} Display;
typedef struct {} Visual;
typedef unsigned long VisualID;
typedef struct {
Visual *visual;
VisualID visualid;
int screen;
int depth;
int c_class; /* C++ */
unsigned long red_mask;
unsigned long green_mask;
unsigned long blue_mask;
int colormap_size;
int bits_per_rgb;
} XVisualInfo;
</code></pre>
<p><code>XGetVisualInfo</code> returns all of the available pixel
formats in the form of <code>XVisualInfo</code>s which match a given
template. <code>display</code> is the current connection to the X
server. <code>vinfo_mask</code> indicates which fields from the template
to match against. <code>vinfo_template</code> is a partially filled-in
<code>XVisualInfo</code> specifying the characteristics to match.
<code>nitems_return</code> is a pointer to an integer indicating how
many <code>XVisualInfo</code>s were returned. The return value, rather
than being a pointer to a single <code>XVisualInfo</code>, is a pointer
to the start of an array of <code>XVisualInfo</code> data
structures.</p>
<p>There are two basic steps to being able to return this array properly
to Java using GlueGen. The first is creating a direct ByteBuffer of the
appropriate size in the autogenerated JNI code. The second is slicing up
this ByteBuffer appropriately in order to return an
<code>XVisualInfo[]</code> at the Java level.</p>
<p>In the autogenerated JNI code, after the call to
<code>XGetVisualInfo</code> is made, the outgoing
<code>nitems_return</code> value points to the number of elements in the
returned array, which indicates the size of the direct ByteBuffer which
would need to wrap these elements. However, if we look at the
implementation of one of the generated glue code variants for this
method (specifically, the one taking an <code>int[]</code> as the third
argument), we can see a problem in trying to access this value in the C
code:</p>
<pre><code> JNIEXPORT jobject JNICALL
Java_testfunction_TestFunction_XGetVisualInfo1__Ljava_nio_ByteBuffer_2JLjava_nio_ByteBuffer_2Ljava_lang_Object_2I(
JNIEnv *env, jclass _unused, jobject arg0, jlong arg1, jobject arg2, jobject arg3, jint arg3_byte_offset) {
...
int * _ptr3 = NULL;
...
if (arg3 != NULL) {
_ptr3 = (int *) (((char*) (*env)->GetPrimitiveArrayCritical(env, arg3, NULL)) + arg3_byte_offset);
}
_res = XGetVisualInfo((Display *) _ptr0, (long) arg1, (XVisualInfo *) _ptr2, (int *) _ptr3);
if (arg3 != NULL) {
(*env)->ReleasePrimitiveArrayCritical(env, arg3, _ptr3, 0);
}
if (_res == NULL) return NULL;
return (*env)->NewDirectByteBuffer(env, _res, ??? What to put here ???);
}
</code></pre>
<p>Note that at the point of the statement “What to put here?” the
pointer to the storage of the <code>int[]</code>, <code>_ptr3</code>,
has already been released via
<code>ReleasePrimitiveArrayCritical</code>. This means that it may not
be referenced at the point needed in the code.</p>
<p>To solve this problem we use the <a
href="#TemporaryCVariableDeclaration">TemporaryCVariableDeclaration</a>
and <a
href="#TemporaryCVariableAssignment">TemporaryCVariableAssignment</a>
directives. We want to declare a persistent integer variable down in the
C code and assign the returned array length to that variable before the
primitive array is released. While in order to do this we unfortunately
need to know something about the structure of the autogenerated JNI
code, at least we don’t have to hand-edit it afterward. We add the
following directives to the configuration file:</p>
<pre><code> # Get returned array's capacity from XGetVisualInfo to be correct
TemporaryCVariableDeclaration XGetVisualInfo int count;
TemporaryCVariableAssignment XGetVisualInfo count = _ptr3[0];
</code></pre>
<p>Now in the autogenerated JNI code the variable “count” will contain
the number of elements in the returned array. We can then reference this
variable in a <a href="#ReturnValueCapacity">ReturnValueCapacity</a>
directive:</p>
<pre><code> ReturnValueCapacity XGetVisualInfo count * sizeof(XVisualInfo)
</code></pre>
<p>At this point the <code>XGetVisualInfo</code> binding will return a
Java-side <code>XVisualInfo</code> object whose backing ByteBuffer is
the correct size. We now have to inform GlueGen that the underlying
ByteBuffer represents not a single <code>XGetVisualInfo</code> struct,
but an array of them, using the <a
href="#ReturnedArrayLength">ReturnedArrayLength</a> directive. This
conversion is performed on the Java side of the autogenerated code.
Here, the first element of either the passed <code>IntBuffer</code> or
<code>int[]</code> contains the number of elements in the returned
array. (Alternatively, we could examine the length of the ByteBuffer
returned from C to Java and divide by <code>XVisualInfo.size()</code>.)
Because there are two overloadings produced by GlueGen for this method,
if we reference the <code>nitems_return</code> argument in a <a
href="#ReturnedArrayLength">ReturnedArrayLength</a> directive, we need
to handle not only the differing data types properly
(<code>IntBuffer</code> vs. <code>int[]</code>), but also the fact that
both the integer array and its offset value are substituted for any
reference to the fourth argument.</p>
<p>To solve this problem, we define a pair of private helper functions
whose purpose is to handle this overloading.</p>
<pre><code> CustomJavaCode TestFunction private static int getFirstElement(IntBuffer buf) {
CustomJavaCode TestFunction return buf.get(buf.position());
CustomJavaCode TestFunction }
CustomJavaCode TestFunction private static int getFirstElement(int[] arr,
CustomJavaCode TestFunction int offset) {
CustomJavaCode TestFunction return arr[offset];
CustomJavaCode TestFunction }
</code></pre>
<p>Now we can simply write for the returned array length:</p>
<pre><code> ReturnedArrayLength XGetVisualInfo getFirstElement({3})
</code></pre>
<p>That’s all that is necessary. GlueGen will then produce the following
Java-side overloadings for this function:</p>
<pre><code> public static XVisualInfo[] XGetVisualInfo(Display arg0,
long arg1,
XVisualInfo arg2,
java.nio.IntBuffer arg3);
public static XVisualInfo[] XGetVisualInfo(Display arg0,
long arg1,
XVisualInfo arg2,
int[] arg3, int arg3_offset);
</code></pre>
<p>As it happens, we don’t really need the Display and Visual data
structures to be produced; they can be treated as <code>long</code>s on
the Java side. Therefore we can add the following directives to the
configuration file:</p>
<pre><code> # We don't need the Display and Visual data structures to be
# explicitly exposed
Opaque long Display *
Opaque long Visual *
# Ignore the empty Display and Visual data structures (though made
# opaque, the references from XVisualInfo and elsewhere are still
# traversed)
Ignore Display
Ignore Visual
</code></pre>
<p>The final generated Java API is the following:</p>
<pre><code> public static XVisualInfo[] XGetVisualInfo(long arg0,
long arg1,
XVisualInfo arg2,
java.nio.IntBuffer arg3);
public static XVisualInfo[] XGetVisualInfo(long arg0,
long arg1,
XVisualInfo arg2,
int[] arg3, int arg3_offset);
</code></pre>
<h3 id="returned-arrays-of-pointers"><span
id="SecPointerArrays">Returned arrays of pointers</span></h3>
<p>Files:</p>
<ul>
<li><a href="example7/function.h">function.h</a></li>
<li><a href="example7/function.cfg">function.cfg</a></li>
<li><a href="example7/gen.sh">gen.sh</a></li>
</ul>
<p>As with the <a href="#SecStructArrays">example above</a>, this
example is taken from JOGL’s X11 binding. Here we show how to expose to
Java a C routine returning an array of pointers to a data structure.</p>
<p>The declaration of the function we are binding is as follows:</p>
<pre><code> typedef struct __GLXFBConfigRec *GLXFBConfig;
GLXFBConfig *glXChooseFBConfig( Display *dpy, int screen,
const int *attribList, int *nitems );
</code></pre>
<p>This function is used during allocation of a hardware-accelerated
off-screen surface (“pbuffer”) on X11 platforms; its exact meaning is
not important. The semantics of the arguments and return value are as
follows. As in the <a href="#SecStructArrays">previous example</a>, it
accepts a connection to the current X display as one argument. The
screen of this display is the second argument. The
<code>attribList</code> is a zero-terminated list of integer attributes;
because it is zero-terminated, the length of this list is not passed to
the function. As in the previous example, the <code>nitems</code>
argument points to an integer into which the number of returned
<code>GLXFBConfig</code> objects is placed. The return value is an array
of <code>GLXFBConfig</code> objects.</p>
<p>Because the <code>GLXFBConfig</code> data type is typedefed as a
pointer to an opaque (undefined) struct, the construct
<code>GLXFBConfig*</code> is implicitly a “pointer-to-pointer” type.
GlueGen automatically assumes this is convertible to a Java-side array
of accessors to structs. The only configuration necessary is to tell
GlueGen the length of this array.</p>
<p>As in the previous example, we use the <a
href="#TemporaryCVariableDeclaration">TemporaryCVariableDeclaration</a>
and <a
href="#TemporaryCVariableAssignment">TemporaryCVariableAssignment</a>
directives to capture the length of the returned array:</p>
<p>TemporaryCVariableDeclaration glXChooseFBConfig int count;
TemporaryCVariableAssignment glXChooseFBConfig count = _ptr3[0];</p>
<p>The structure of the generated glue code for the return value is
subtly different than in the previous example. The question in this case
is not whether the return value is a pointer to a single object vs. a
pointer to an array of objects; it is what the length of the returned
array is, since we already know that the return type is
pointer-to-pointer and is therefore an array. We use the <a
href="#ReturnValueLength">ReturnValueLength</a> directive for this
case:</p>
<pre><code> ReturnValueLength glXChooseFBConfig count
</code></pre>
<p>We add similar Opaque directives to the previous example to yield the
resulting Java bindings for this function:</p>
<pre><code> public static GLXFBConfig[] glXChooseFBConfig(long dpy,
int screen,
java.nio.IntBuffer attribList,
java.nio.IntBuffer nitems);
public static GLXFBConfig[] glXChooseFBConfig(long dpy,
int screen,
int[] attribList, int attribList_offset,
int[] nitems, int nitems_offset);
</code></pre>
<p>Note that because the GLXFBConfig data type is returned as an element
of an array, we can not use the Opaque directive to erase this data type
to <code>long</code> as we did with the <code>Display</code> data
type.</p>
</body>
</html>
|