1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
|
from __future__ import absolute_import, division, print_function
import logging
import numpy as np
__all__ = ['Coordinates', 'WCSCoordinates']
class Coordinates(object):
'''
Base class for coordinate transformation
'''
def __init__(self):
pass
def pixel2world(self, *args):
return args
def world2pixel(self, *args):
return args
def world_axis(self, data, axis):
"""
Find the world coordinates along a given dimension, and which for now we
center on the pixel origin.
Parameters
----------
data : `~glue.core.data.Data`
The data to compute the coordinate axis for (this is used to
determine the size of the axis)
axis : int
The axis to compute, in Numpy axis order
Notes
-----
This method computes the axis values using pixel positions at the center
of the data along all other axes. This will therefore only give the
correct result for non-dependent axes (which can be checked using the
``dependent_axes`` method)
"""
pixel = []
for i, s in enumerate(data.shape):
if i == axis:
pixel.append(np.arange(data.shape[axis]))
else:
pixel.append(np.repeat((s - 1) / 2, data.shape[axis]))
return self.pixel2world(*pixel[::-1])[::-1][axis]
def world_axis_unit(self, axis):
"""
Return the unit of the world coordinate given by ``axis`` (assuming the
Numpy axis order)
"""
return ''
def axis_label(self, axis):
return "World %i" % axis
def dependent_axes(self, axis):
"""Return a tuple of which world-axes are non-indepndent
from a given pixel axis
The axis index is given in numpy ordering convention (note that
opposite the fits convention)
"""
return (axis,)
def __gluestate__(self, context):
return {} # no state
@classmethod
def __setgluestate__(cls, rec, context):
return cls()
class WCSCoordinates(Coordinates):
'''
Class for coordinate transformation based on the WCS FITS
standard. This class does not take into account
distortions.
References
----------
* Greisen & Calabretta (2002), Astronomy and Astrophysics, 395, 1061
* Calabretta & Greisen (2002), Astronomy and Astrophysics, 395, 1077
* Greisen, Calabretta, Valdes & Allen (2006), Astronomy and
Astrophysics, 446, 747
'''
def __init__(self, header, wcs=None):
super(WCSCoordinates, self).__init__()
from astropy.wcs import WCS
self._header = header
try:
naxis = header['NAXIS']
except (KeyError, TypeError):
naxis = None
wcs = wcs or WCS(header, naxis=naxis)
# update WCS interface if using old API
mapping = {'wcs_pix2world': 'wcs_pix2sky',
'wcs_world2pix': 'wcs_sky2pix',
'all_pix2world': 'all_pix2sky'}
for k, v in mapping.items():
if not hasattr(wcs, k):
setattr(wcs, k, getattr(wcs, v))
self._wcs = wcs
def world_axis_unit(self, axis):
return str(self._wcs.wcs.cunit[self._wcs.naxis - 1 - axis])
@property
def wcs(self):
return self._wcs
@property
def header(self):
return self._header
def dependent_axes(self, axis):
# if distorted, all bets are off
try:
if any([self._wcs.sip, self._wcs.det2im1, self._wcs.det2im2]):
return tuple(range(self._wcs.naxis))
except AttributeError:
pass
# here, axis is the index number in numpy convention
# we flip with [::-1] because WCS and numpy index
# conventions are reversed
pc = np.array(self._wcs.wcs.get_pc()[::-1, ::-1])
ndim = pc.shape[0]
pc[np.eye(ndim, dtype=np.bool)] = 0
axes = self._wcs.get_axis_types()[::-1]
# axes rotated
if pc[axis, :].any() or pc[:, axis].any():
return tuple(range(ndim))
# XXX can spectral still couple with other axes by this point??
if axes[axis].get('coordinate_type') != 'celestial':
return (axis,)
# in some cases, even the celestial coordinates are
# independent. We don't catch that here.
return tuple(i for i, a in enumerate(axes) if
a.get('coordinate_type') == 'celestial')
def __setstate__(self, state):
self.__dict__ = state
# wcs object doesn't seem to unpickle properly. reconstruct it
from astropy.wcs import WCS
try:
naxis = self._header['NAXIS']
except (KeyError, TypeError):
naxis = None
self._wcs = WCS(self._header, naxis=naxis)
def pixel2world(self, *pixel):
'''
Convert pixel to world coordinates, preserving input type/shape
:param args: xpix, ypix[, zpix]: scalars, lists, or Numpy arrays
The pixel coordinates to convert
*Returns*
xworld, yworld, [zworld]: scalars, lists or Numpy arrays
The corresponding world coordinates
'''
arrs = [np.asarray(p) for p in pixel]
pix = np.vstack(a.ravel() for a in arrs).T
result = tuple(self._wcs.wcs_pix2world(pix, 0).T)
for r, a in zip(result, arrs):
r.shape = a.shape
return result
def world2pixel(self, *world):
'''
Convert pixel to world coordinates, preserving input type/shape
:param world:
xworld, yworld[, zworld] : scalars, lists or Numpy arrays
The world coordinates to convert
*Returns*
xpix, ypix: scalars, lists, or Numpy arrays
The corresponding pixel coordinates
'''
arrs = [np.asarray(w) for w in world]
pix = np.vstack(a.ravel() for a in arrs).T
result = tuple(self._wcs.wcs_world2pix(pix, 0).T)
for r, a in zip(result, arrs):
r.shape = a.shape
return result
def axis_label(self, axis):
header = self._header
ndim = _get_ndim(header)
num = _get_ndim(header) - axis # number orientation reversed
ax = self._header.get('CTYPE%i' % num)
if ax is not None:
if len(ax) == 8 or '-' in ax: # assume standard format
ax = ax[:5].split('-')[0].title()
else:
ax = ax.title()
translate = dict(
Glon='Galactic Longitude',
Glat='Galactic Latitude',
Ra='Right Ascension',
Dec='Declination',
Velo='Velocity',
Freq='Frequency'
)
return translate.get(ax, ax)
return super(WCSCoordinates, self).axis_label(axis)
def __gluestate__(self, context):
return dict(header=self._wcs.to_header_string())
@classmethod
def __setgluestate__(cls, rec, context):
from astropy.io import fits
return cls(fits.Header.fromstring(rec['header']))
def coordinates_from_header(header):
""" Convert a FITS header into a glue Coordinates object
:param header: Header to convert
:type header: :class:`astropy.io.fits.Header`
:rtype: :class:`~glue.core.coordinates.Coordinates`
"""
# We check whether the header contains at least CRVAL1 - if not, we would
# end up with a default WCS that isn't quite 1 to 1 (because of a 1-pixel
# offset) so better use Coordinates in that case.
from astropy.io.fits import Header
if isinstance(header, Header) and 'CRVAL1' in header:
try:
return WCSCoordinates(header)
except Exception as e:
logging.getLogger(__name__).warn("\n\n*******************************\n"
"Encounted an error during WCS parsing. "
"Discarding world coordinates! "
"\n%s\n"
"*******************************\n\n" % e
)
return Coordinates()
def _get_ndim(header):
if 'NAXIS' in header:
return header['NAXIS']
if 'WCSAXES' in header:
return header['WCSAXES']
return None
def coordinates_from_wcs(wcs):
"""Convert a wcs object into a glue Coordinates object
:param wcs: The WCS object to use
:rtype: :class:`~glue.core.coordinates.Coordinates`
"""
from astropy.io import fits
hdr_str = wcs.wcs.to_header()
hdr = fits.Header.fromstring(hdr_str)
try:
return WCSCoordinates(hdr, wcs)
except (AttributeError, TypeError) as e:
print(e)
return Coordinates()
def header_from_string(string):
"""
Convert a string to a FITS header
"""
from astropy.io import fits
return fits.Header.fromstring(string, sep='\n')
|