File: matplotlib.py

package info (click to toggle)
glueviz 0.9.1%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 17,180 kB
  • ctags: 6,728
  • sloc: python: 37,111; makefile: 134; sh: 60
file content (283 lines) | stat: -rw-r--r-- 7,665 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
from __future__ import absolute_import, division, print_function

import logging
from functools import wraps

import numpy as np

# We avoid importing matplotlib up here otherwise Matplotlib and therefore Qt
# get imported as soon as glue.utils is imported.

from glue.external.axescache import AxesCache
from glue.utils.misc import DeferredMethod


__all__ = ['renderless_figure', 'all_artists', 'new_artists', 'remove_artists',
           'get_extent', 'view_cascade', 'fast_limits', 'defer_draw',
           'color2rgb', 'point_contour', 'cache_axes']


def renderless_figure():
    # Matplotlib figure that skips the render step, for test speed
    from mock import MagicMock
    import matplotlib.pyplot as plt
    fig = plt.figure()
    fig.canvas.draw = MagicMock()
    plt.close('all')
    return fig


def all_artists(fig):
    """
    Build a set of all Matplotlib artists in a Figure
    """
    return set(item
               for axes in fig.axes
               for container in [axes.collections, axes.patches, axes.lines,
                                 axes.texts, axes.artists, axes.images]
               for item in container)


def new_artists(fig, old_artists):
    """
    Find the newly-added artists in a figure

    :param fig: Matplotlib figure
    :param old_artists: Return value from :func:all_artists
    :returns: All artists added since all_artists was called
    """
    return all_artists(fig) - old_artists


def remove_artists(artists):
    """
    Remove a collection of matplotlib artists from a scene

    :param artists: Container of artists
    """
    for a in artists:
        try:
            a.remove()
        except ValueError:  # already removed
            pass


def get_extent(view, transpose=False):
    sy, sx = [s for s in view if isinstance(s, slice)]
    if transpose:
        return (sy.start, sy.stop, sx.start, sx.stop)
    return (sx.start, sx.stop, sy.start, sy.stop)


def view_cascade(data, view):
    """
    Return a set of views progressively zoomed out of input at roughly constant
    pixel count

    Parameters
    ----------
    data : array-like
        The array to view
    view :
        The original view into the data
    """
    shp = data.shape
    v2 = list(view)
    logging.debug("image shape: %s, view: %s", shp, view)

    # choose stride length that roughly samples entire image
    # at roughly the same pixel count
    step = max(shp[i - 1] * v.step // max(v.stop - v.start, 1)
               for i, v in enumerate(view) if isinstance(v, slice))
    step = max(step, 1)

    for i, v in enumerate(v2):
        if not(isinstance(v, slice)):
            continue
        v2[i] = slice(0, shp[i - 1], step)

    return tuple(v2), view


def _scoreatpercentile(values, percentile, limit=None):
    # Avoid using the scipy version since it is available in Numpy
    if limit is not None:
        values = values[(values >= limit[0]) & (values <= limit[1])]
    return np.percentile(values, percentile)


def fast_limits(data, plo, phi):
    """
    Quickly estimate percentiles in an array, using a downsampled version

    Parameters
    ----------
    data : `numpy.ndarray`
        The array to estimate the percentiles for
    plo, phi : float
        The percentile values

    Returns
    -------
    lo, hi : float
        The percentile values
    """

    shp = data.shape
    view = tuple([slice(None, None, np.intp(max(s / 50, 1))) for s in shp])
    values = np.asarray(data)[view]
    if ~np.isfinite(values).any():
        return (0.0, 1.0)

    limits = (-np.inf, np.inf)
    lo = _scoreatpercentile(values.flat, plo, limit=limits)
    hi = _scoreatpercentile(values.flat, phi, limit=limits)
    return lo, hi


def defer_draw(func):
    """
    Decorator that globally defers all Agg canvas draws until
    function exit.

    If a Canvas instance's draw method is invoked multiple times,
    it will only be called once after the wrapped function returns.
    """
    @wraps(func)
    def wrapper(*args, **kwargs):

        from matplotlib.backends.backend_agg import FigureCanvasAgg

        # don't recursively defer draws
        if isinstance(FigureCanvasAgg.draw, DeferredMethod):
            return func(*args, **kwargs)

        try:
            FigureCanvasAgg.draw = DeferredMethod(FigureCanvasAgg.draw)
            result = func(*args, **kwargs)
        finally:
            FigureCanvasAgg.draw.execute_deferred_calls()
            FigureCanvasAgg.draw = FigureCanvasAgg.draw.original_method
        return result

    wrapper._is_deferred = True
    return wrapper


def color2rgb(color):
    from matplotlib.colors import ColorConverter
    result = ColorConverter().to_rgb(color)
    return result


def point_contour(x, y, data):
    """Calculate the contour that passes through (x,y) in data

    :param x: x location
    :param y: y location
    :param data: 2D image
    :type data: :class:`numpy.ndarray`

    Returns:

       * A (nrow, 2column) numpy array. The two columns give the x and
         y locations of the contour vertices
    """
    try:
        from scipy import ndimage
    except ImportError:
        raise ImportError("Image processing in Glue requires SciPy")

    inten = data[y, x]
    labeled, nr_objects = ndimage.label(data >= inten)
    z = data * (labeled == labeled[y, x])
    y, x = np.mgrid[0:data.shape[0], 0:data.shape[1]]
    from matplotlib import _cntr
    cnt = _cntr.Cntr(x, y, z)
    xy = cnt.trace(inten)
    if not xy:
        return None
    xy = xy[0]
    return xy


class AxesResizer(object):

    def __init__(self, ax, margins):

        self.ax = ax
        self.margins = margins

    @property
    def margins(self):
        return self._margins

    @margins.setter
    def margins(self, margins):
        self._margins = margins

    def on_resize(self, event):

        fig_width = self.ax.figure.get_figwidth()
        fig_height = self.ax.figure.get_figheight()

        x0 = self.margins[0] / fig_width
        x1 = 1 - self.margins[1] / fig_width
        y0 = self.margins[2] / fig_height
        y1 = 1 - self.margins[3] / fig_height

        dx = max(0.01, x1 - x0)
        dy = max(0.01, y1 - y0)

        self.ax.set_position([x0, y0, dx, dy])
        self.ax.figure.canvas.draw()


def freeze_margins(axes, margins=[1, 1, 1, 1]):
    """
    Make sure margins of axes stay fixed.

    Parameters
    ----------
    ax_class : matplotlib.axes.Axes
        The axes class for which to fix the margins
    margins : iterable
        The margins, in inches. The order of the margins is
        ``[left, right, bottom, top]``

    Notes
    -----
    The object that controls the resizing is stored as the resizer attribute of
    the Axes. This can be used to then change the margins:

        >> ax.resizer.margins = [0.5, 0.5, 0.5, 0.5]

    """

    axes.resizer = AxesResizer(axes, margins)
    axes.figure.canvas.mpl_connect('resize_event', axes.resizer.on_resize)


def cache_axes(axes, toolbar):
    """
    Set up caching for an axes object.

    After this, cached renders will be used to quickly re-render an axes during
    window resizing or interactive pan/zooming.

    This function returns an AxesCache instance.

    Parameters
    ----------
    axes : `~matplotlib.axes.Axes`
        The axes to cache
    toolbar : `~glue.viewers.common.qt.toolbar.GlueToolbar`
        The toolbar managing the axes' canvas
    """
    canvas = axes.figure.canvas
    cache = AxesCache(axes)
    canvas.resize_begin.connect(cache.enable)
    canvas.resize_end.connect(cache.disable)
    toolbar.pan_begin.connect(cache.enable)
    toolbar.pan_end.connect(cache.disable)
    return cache