1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232
|
/***********************************************************************
quaternion.cpp
A quaternion class
-------------------------------------------------------------------
Feb 1998, Paul Rademacher (rademach@cs.unc.edu)
************************************************************************/
#include "quaternion.h"
#include <math.h>
#include "stdinc.h"
/******************************************* constructors **************/
quat::quat( void )
{
*this = quat_identity();
}
quat::quat(const float x, const float y, const float z, const float w)
{
v.set( x, y, z );
s = w;
}
quat::quat( vec3 _v, float _s )
{
set( _v, _s );
}
quat::quat( float _s, vec3 _v )
{
set( _v, _s );
}
quat::quat( const float *d )
{
v[0] = d[0];
v[1] = d[1];
v[2] = d[2];
s = d[3];
}
quat::quat( const double *d )
{
v[0] = d[0];
v[1] = d[1];
v[2] = d[2];
s = d[3];
}
quat::quat( const quat &q )
{
v = q.v;
s = q.s;
}
void quat::set( vec3 _v, float _s )
{
v = _v;
s = _s;
}
quat& quat::operator = (const quat& q)
{
v = q.v; s = q.s; return *this;
}
/* ... */
/******** quat friends ************/
quat operator + (const quat &a, const quat &b)
{
return quat( a.s+b.s, a.v+b.v );
}
quat operator - (const quat &a, const quat &b)
{
return quat( a.s-b.s, a.v-b.v );
}
quat operator - (const quat &a )
{
return quat( -a.s, -a.v );
}
quat operator * ( const quat &a, const quat &b)
{
return quat( a.s*b.s - a.v*b.v, a.s*b.v + b.s*a.v + a.v^b.v );
}
quat operator * ( const quat &a, const float t)
{
return quat( a.v * t, a.s * t );
}
quat operator * ( const float t, const quat &a )
{
return quat( a.v * t, a.s * t );
}
mat4 quat::to_mat4( void )
{
float t, xs, ys, zs, wx, wy, wz, xx, xy, xz, yy, yz, zz;
#if 0
vec3 a, c, b, d;
#endif
t = 2.0 / (v*v + s*s);
xs = v[VX]*t; ys = v[VY]*t; zs = v[VZ]*t;
wx = s*xs; wy = s*ys; wz = s*zs;
xx = v[VX]*xs; xy = v[VX]*ys; xz = v[VX]*zs;
yy = v[VY]*ys; yz = v[VY]*zs; zz = v[VZ]*zs;
mat4 matrix( 1.0-(yy+zz), xy+wz, xz-wy, 0.0,
xy-wz, 1.0-(xx+zz), yz+wx, 0.0,
xz+wy, yz-wx, 1.0-(xx+yy), 0.0,
0.0, 0.0, 0.0, 1.0 );
return matrix;
}
/************************************************* quat_identity() *****/
/* Returns quaternion identity element */
quat quat_identity( void )
{
return quat( vec3( 0.0, 0.0, 0.0 ), 1.0 );
}
/************************************************ quat_slerp() ********/
/* Quaternion spherical interpolation */
quat quat_slerp( quat from, quat to, float t )
{
quat to1;
double omega, cosom, sinom, scale0, scale1;
/* calculate cosine */
cosom = from.v * to.v + from.s + to.s;
/* Adjust signs (if necessary) */
if ( cosom < 0.0 ) {
cosom = -cosom;
to1 = -to;
}
else
{
to1 = to;
}
/* Calculate coefficients */
if ((1.0 - cosom) > FUDGE ) {
/* standard case (slerp) */
omega = acos( cosom );
sinom = sin( omega );
scale0 = sin((1.0 - t) * omega) / sinom;
scale1 = sin(t * omega) / sinom;
}
else {
/* 'from' and 'to' are very close - just do linear interpolation */
scale0 = 1.0 - t;
scale1 = t;
}
return scale0 * from + scale1 * to1;
}
/********************************************** set_angle() ************/
/* set rot angle (degrees) */
void quat::set_angle( float f )
{
vec3 axis = get_axis();
s = cos( DEG2RAD( f ) / 2.0 );
v = axis * sin(DEG2RAD(f) / 2.0);
}
/********************************************** scale_angle() ************/
/* scale rot angle (degrees) */
void quat::scale_angle( float f )
{
set_angle( f * get_angle() );
}
/********************************************** get_angle() ************/
/* get rot angle (degrees). Assumes s is between -1 and 1 */
float quat::get_angle( void )
{
return RAD2DEG( 2.0 * acos( s ) );
}
/********************************************* get_axis() **************/
vec3 quat::get_axis( void )
{
float scale;
scale = sin( acos( s ) );
if ( scale < FUDGE AND scale > -FUDGE )
return vec3( 0.0, 0.0, 0.0 );
else
return v / scale;
}
/******************************************* quat::print() ************/
void quat::print( FILE *dest, char *name )
{
fprintf( dest, "%s: v:<%3.2f %3.2f %3.2f> s:%3.2f\n", name,
v[0], v[1], v[2], s );
}
|