1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385
|
/* vm.c: Glulxe code related to the VM overall. Also miscellaneous stuff.
Designed by Andrew Plotkin <erkyrath@eblong.com>
http://eblong.com/zarf/glulx/index.html
*/
#include "glk.h"
#include "glulxe.h"
/* The memory blocks which contain VM main memory and the stack. */
unsigned char *memmap = NULL;
unsigned char *stack = NULL;
/* Various memory addresses which are useful. These are loaded in from
the game file header. */
glui32 ramstart;
glui32 endgamefile;
glui32 origendmem;
glui32 stacksize;
glui32 startfuncaddr;
glui32 origstringtable;
glui32 checksum;
/* The VM registers. */
glui32 stackptr;
glui32 frameptr;
glui32 pc;
glui32 stringtable;
glui32 valstackbase;
glui32 localsbase;
glui32 endmem;
glui32 protectstart, protectend;
/* This is not needed for VM operation, but it may be needed for
autosave/autorestore. */
glui32 prevpc;
void (*stream_char_handler)(unsigned char ch);
void (*stream_unichar_handler)(glui32 ch);
/* setup_vm():
Read in the game file and build the machine, allocating all the memory
necessary.
*/
void setup_vm()
{
unsigned char buf[4 * 7];
int res;
pc = 0; /* Clear this, so that error messages are cleaner. */
prevpc = 0;
/* Read in all the size constants from the game file header. */
stream_char_handler = NULL;
stream_unichar_handler = NULL;
glk_stream_set_position(gamefile, gamefile_start+8, seekmode_Start);
res = glk_get_buffer_stream(gamefile, (char *)buf, 4 * 7);
if (res != 4 * 7) {
fatal_error("The game file header is too short.");
}
ramstart = Read4(buf+0);
endgamefile = Read4(buf+4);
origendmem = Read4(buf+8);
stacksize = Read4(buf+12);
startfuncaddr = Read4(buf+16);
origstringtable = Read4(buf+20);
checksum = Read4(buf+24);
/* Set the protection range to (0, 0), meaning "off". */
protectstart = 0;
protectend = 0;
/* Do a few sanity checks. */
if ((ramstart & 0xFF)
|| (endgamefile & 0xFF)
|| (origendmem & 0xFF)
|| (stacksize & 0xFF)) {
nonfatal_warning("One of the segment boundaries in the header is not "
"256-byte aligned.");
}
if (endgamefile != gamefile_len) {
nonfatal_warning("The gamefile length does not match the header "
"endgamefile length.");
}
if (ramstart < 0x100 || endgamefile < ramstart || origendmem < endgamefile) {
fatal_error("The segment boundaries in the header are in an impossible "
"order.");
}
if (stacksize < 0x100) {
fatal_error("The stack size in the header is too small.");
}
/* Allocate main memory and the stack. This is where memory allocation
errors are most likely to occur. */
endmem = origendmem;
memmap = (unsigned char *)glulx_malloc(origendmem);
if (!memmap) {
fatal_error("Unable to allocate Glulx memory space.");
}
stack = (unsigned char *)glulx_malloc(stacksize);
if (!stack) {
glulx_free(memmap);
memmap = NULL;
fatal_error("Unable to allocate Glulx stack space.");
}
stringtable = 0;
/* Initialize various other things in the terp. */
init_operands();
init_accel();
init_serial();
/* Set up the initial machine state. */
vm_restart();
/* If the debugger is compiled in, check that the debug data matches
the game. (This only prints warnings for mismatch.) */
debugger_check_story_file();
/* Also, set up any start-time debugger state. This may do a block-
and-debug, if the user has requested that. */
debugger_setup_start_state();
}
/* finalize_vm():
Deallocate all the memory and shut down the machine.
*/
void finalize_vm()
{
stream_set_table(0);
if (memmap) {
glulx_free(memmap);
memmap = NULL;
}
if (stack) {
glulx_free(stack);
stack = NULL;
}
final_serial();
}
/* vm_restart():
Put the VM into a state where it's ready to begin executing the
game. This is called both at startup time, and when the machine
performs a "restart" opcode.
*/
void vm_restart()
{
glui32 lx;
int res;
int bufpos;
char buf[0x100];
/* Deactivate the heap (if it was active). */
heap_clear();
/* Reset memory to the original size. */
lx = change_memsize(origendmem, FALSE);
if (lx)
fatal_error("Memory could not be reset to its original size.");
/* Load in all of main memory. We do this in 256-byte chunks, because
why rely on OS stream buffering? */
glk_stream_set_position(gamefile, gamefile_start, seekmode_Start);
bufpos = 0x100;
for (lx=0; lx<endgamefile; lx++) {
if (bufpos >= 0x100) {
int count = glk_get_buffer_stream(gamefile, buf, 0x100);
if (count != 0x100) {
fatal_error("The game file ended unexpectedly.");
}
bufpos = 0;
}
res = buf[bufpos++];
if (lx >= protectstart && lx < protectend)
continue;
memmap[lx] = res;
}
for (lx=endgamefile; lx<origendmem; lx++) {
memmap[lx] = 0;
}
/* Reset all the registers */
stackptr = 0;
frameptr = 0;
pc = 0;
prevpc = 0;
stream_set_iosys(0, 0);
stream_set_table(origstringtable);
valstackbase = 0;
localsbase = 0;
/* Note that we do not reset the protection range. */
/* Push the first function call. (No arguments.) */
enter_function(startfuncaddr, 0, NULL);
/* We're now ready to execute. */
}
/* change_memsize():
Change the size of the memory map. This may not be available at
all; #define FIXED_MEMSIZE if you want the interpreter to
unconditionally refuse. The internal flag should be true only when
the heap-allocation system is calling.
Returns 0 for success; otherwise, the operation failed.
*/
glui32 change_memsize(glui32 newlen, int internal)
{
long lx;
unsigned char *newmemmap;
if (newlen == endmem)
return 0;
#ifdef FIXED_MEMSIZE
return 1;
#else /* FIXED_MEMSIZE */
if ((!internal) && heap_is_active())
fatal_error("Cannot resize Glulx memory space while heap is active.");
if (newlen < origendmem)
fatal_error("Cannot resize Glulx memory space smaller than it started.");
if (newlen & 0xFF)
fatal_error("Can only resize Glulx memory space to a 256-byte boundary.");
newmemmap = (unsigned char *)glulx_realloc(memmap, newlen);
if (!newmemmap) {
/* The old block is still in place, unchanged. */
return 1;
}
memmap = newmemmap;
if (newlen > endmem) {
for (lx=endmem; lx<newlen; lx++) {
memmap[lx] = 0;
}
}
endmem = newlen;
return 0;
#endif /* FIXED_MEMSIZE */
}
/* pop_arguments():
If addr is 0, pop N arguments off the stack, and put them in an array.
If non-0, take N arguments from that main memory address instead.
This has to dynamically allocate if there are more than 32 arguments,
but that shouldn't be a problem.
*/
glui32 *pop_arguments(glui32 count, glui32 addr)
{
int ix;
glui32 argptr;
glui32 *array;
#define MAXARGS (32)
static glui32 statarray[MAXARGS];
static glui32 *dynarray = NULL;
static glui32 dynarray_size = 0;
if (count == 0)
return NULL;
if (count <= MAXARGS) {
/* Store in the static array. */
array = statarray;
}
else {
if (!dynarray) {
dynarray_size = count+8;
dynarray = glulx_malloc(sizeof(glui32) * dynarray_size);
if (!dynarray)
fatal_error("Unable to allocate function arguments.");
array = dynarray;
}
else {
if (dynarray_size >= count) {
/* It fits. */
array = dynarray;
}
else {
dynarray_size = count+8;
dynarray = glulx_realloc(dynarray, sizeof(glui32) * dynarray_size);
if (!dynarray)
fatal_error("Unable to reallocate function arguments.");
array = dynarray;
}
}
}
if (!addr) {
if (stackptr < valstackbase+4*count)
fatal_error("Stack underflow in arguments.");
stackptr -= 4*count;
for (ix=0; ix<count; ix++) {
argptr = stackptr+4*((count-1)-ix);
array[ix] = Stk4(argptr);
}
}
else {
for (ix=0; ix<count; ix++) {
array[ix] = Mem4(addr);
addr += 4;
}
}
return array;
}
/* verify_address():
Make sure that count bytes beginning with addr all fall within the
current memory map. This is called at every memory (read) access if
VERIFY_MEMORY_ACCESS is defined in the header file.
*/
void verify_address(glui32 addr, glui32 count)
{
if (addr >= endmem)
fatal_error_i("Memory access out of range", addr);
if (count > 1) {
addr += (count-1);
if (addr >= endmem)
fatal_error_i("Memory access out of range", addr);
}
}
/* verify_address_write():
Make sure that count bytes beginning with addr all fall within RAM.
This is called at every memory write if VERIFY_MEMORY_ACCESS is
defined in the header file.
*/
void verify_address_write(glui32 addr, glui32 count)
{
if (addr < ramstart)
fatal_error_i("Memory write to read-only address", addr);
if (addr >= endmem)
fatal_error_i("Memory access out of range", addr);
if (count > 1) {
addr += (count-1);
if (addr >= endmem)
fatal_error_i("Memory access out of range", addr);
}
}
/* verify_array_addresses():
Make sure that an array of count elements (size bytes each),
starting at addr, does not fall outside the memory map. This goes
to some trouble that verify_address() does not, because we need
to be wary of lengths near -- or beyond -- 0x7FFFFFFF.
*/
void verify_array_addresses(glui32 addr, glui32 count, glui32 size)
{
glui32 bytecount;
if (addr >= endmem)
fatal_error_i("Memory access out of range", addr);
if (count == 0)
return;
bytecount = count*size;
/* If just multiplying by the element size overflows, we have trouble. */
if (bytecount < count)
fatal_error_i("Memory access way too long", addr);
/* If the byte length by itself is too long, or if its end overflows,
we have trouble. */
if (bytecount > endmem || addr+bytecount < addr)
fatal_error_i("Memory access much too long", addr);
/* The simple length test. */
if (addr+bytecount > endmem)
fatal_error_i("Memory access too long", addr);
}
|