File: rasonly.c

package info (click to toggle)
glut 3.7-14
  • links: PTS
  • area: main
  • in suites: woody
  • size: 12,556 kB
  • ctags: 45,170
  • sloc: ansic: 148,716; makefile: 35,208; ada: 2,062; yacc: 473; fortran: 290; lex: 131; csh: 51; sed: 49; sh: 33
file content (326 lines) | stat: -rw-r--r-- 8,027 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
/*
 * rasonly.c -
 *      Demonstrates the use of OpenGL for rasterization-only, with
 *      perspective-correct texture mapping.
 *
 * Michael I. Gold <gold@sgi.com>
 * Silicon Graphics Computer Systems, May 1997
 *
 * Since current low-end 3D accelerators support only rasterization in
 * hardware, a number of developers have expressed interested in using
 * OpenGL as an interface to rasterization hardware while retaining
 * control of transformations and lighting in the application code.
 * Many OpenGL implementations detect and optimize for identity xforms,
 * so this approach is entirely reasonable.
 *
 * Setting up rasterization-only is fairly straightforward.  The projection
 * matrix is set up as a one-to-one mapping between eye and clip coordinates,
 * and the modelview matrix is set up as identity, e.g. object coordinates
 * map directly to eye coordinates.  This can be achieved as follows:
 *
 *      glMatrixMode(GL_PROJECTION);
 *      glLoadIdentity();
 *      glOrtho(0.0f, (GLfloat) width, 0.0f, (GLfloat) height, -1.0f, 1.0f);
 *      glMatrixMode(GL_MODELVIEW);
 *      glLoadIdentity();
 *      glViewport(0, 0, width, height);
 *
 * where (width, height) represent the window dimensions.
 *
 * Now transformed geometry may be specified directly through the standard
 * interfaces (e.g. glVertex*()).  The only tricky part that remains is
 * specifying texture coordinates such that perspective correction may
 * occur.  The answer is to use glTexCoord4*(), and perform the perspective
 * divide on the texture coordinates directly.
 */

#include <stdlib.h>
#include <string.h>
#include <GL/glut.h>

GLboolean motion = GL_TRUE;

/* Matrices */
GLfloat rot = 0.0f;
GLfloat ModelView[16];
GLfloat Projection[16];
GLfloat Viewport[4];

/* Sample geometry */
GLfloat quadV[][4] = {
    { -1.0f, 0.0f, -1.0f, 1.0f },
    {  1.0f, 0.0f, -1.0f, 1.0f },
    {  1.0f, 0.5f, -0.2f, 1.0f },
    { -1.0f, 0.5f, -0.2f, 1.0f },
};

GLfloat quadC[][3] = {
    { 1.0f, 0.0f, 0.0f },
    { 0.0f, 1.0f, 0.0f },
    { 0.0f, 0.0f, 1.0f },
    { 1.0f, 1.0f, 1.0f },
};

GLfloat quadT[][2] = {
    { 0.0f, 0.0f },
    { 0.0f, 1.0f },
    { 1.0f, 1.0f },
    { 1.0f, 0.0f },
};

/*********************************************************************
 * Utility functions
 */

int texWidth = 128;
int texHeight = 128;

/* Create and download the application texture map */
static void
setCheckedTexture(void)
{
    int texSize;
    void *textureBuf;
    GLubyte *p;
    int i,j;

    /* malloc for rgba as worst case */
    texSize = texWidth*texHeight*4;

    textureBuf = malloc(texSize);
    if (NULL == textureBuf) return;

    p = (GLubyte *)textureBuf;
    for (i=0; i < texWidth; i++) {
        for (j=0; j < texHeight; j++) {
            if ((i ^ j) & 8) {
                p[0] = 0xff; p[1] = 0xff; p[2] = 0xff; p[3] = 0xff;
            } else {
                p[0] = 0x08; p[1] = 0x08; p[2] = 0x08; p[3] = 0xff;
            }
            p += 4;
        }
    }
    gluBuild2DMipmaps(GL_TEXTURE_2D, 4, texWidth, texHeight, 
                 GL_RGBA, GL_UNSIGNED_BYTE, textureBuf);
    free(textureBuf);
}

/* Perform one transform operation */
static void
Transform(GLfloat *matrix, GLfloat *in, GLfloat *out)
{
    int ii;

    for (ii=0; ii<4; ii++) {
        out[ii] = 
            in[0] * matrix[0*4+ii] +
            in[1] * matrix[1*4+ii] +
            in[2] * matrix[2*4+ii] +
            in[3] * matrix[3*4+ii];
    }
}

/* Transform a vertex from object coordinates to window coordinates.
 * Lighting is left as an exercise for the reader.
 */
static void
DoTransform(GLfloat *in, GLfloat *out)
{
    GLfloat tmp[4];
    GLfloat invW;       /* 1/w */

    /* Modelview xform */
    Transform(ModelView, in, tmp);

    /* Lighting calculation goes here! */

    /* Projection xform */
    Transform(Projection, tmp, out);

    if (out[3] == 0.0f) /* do what? */
        return;

    invW = 1.0f / out[3];

    /* Perspective divide */
    out[0] *= invW;
    out[1] *= invW;
    out[2] *= invW;

    /* Map to 0..1 range */
    out[0] = out[0] * 0.5f + 0.5f;
    out[1] = out[1] * 0.5f + 0.5f;
    out[2] = out[2] * 0.5f + 0.5f;

    /* Map to viewport */
    out[0] = out[0] * Viewport[2] + Viewport[0];
    out[1] = out[1] * Viewport[3] + Viewport[1];

    /* Store inverted w for performance */
    out[3] = invW;
}

/*********************************************************************
 * Application code begins here
 */

/* For the sake of brevity, I'm use OpenGL to compute my matrices. */
void UpdateModelView(void)
{
    glPushMatrix();
    glLoadIdentity();
    gluLookAt(0.0f, 1.0f, -4.0f,
              0.0f, 0.0f, 0.0f,
              0.0f, 1.0f, 0.0f);
    glRotatef(rot, 0.0f, 1.0f, 0.0f);
    /* Retrieve the matrix */
    glGetFloatv(GL_MODELVIEW_MATRIX, ModelView);
    glPopMatrix();
}

void InitMatrices(void)
{
    /* Calculate projection matrix */
    glMatrixMode(GL_PROJECTION);
    glPushMatrix();
    glLoadIdentity();
    gluPerspective(45.0f, 1.0f, 1.0f, 100.0f);
    /* Retrieve the matrix */
    glGetFloatv(GL_PROJECTION_MATRIX, Projection);
    glPopMatrix();
    glMatrixMode(GL_MODELVIEW);

    UpdateModelView();
}

void Init(void)
{
    glClearColor(0.2f, 0.2f, 0.6f, 1.0f);

    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);
    glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);
    glHint(GL_PERSPECTIVE_CORRECTION_HINT, GL_NICEST);
    glEnable(GL_TEXTURE_2D);
    glEnable(GL_DEPTH_TEST);
    setCheckedTexture();

    InitMatrices();
}

void Redraw(void)
{
    GLfloat tmp[4];
    int ii;

    glClear(GL_COLOR_BUFFER_BIT|GL_DEPTH_BUFFER_BIT);

    glBegin(GL_QUADS);

    for (ii = 0; ii < 4; ii++) {

        /* Transform a vertex from object to window coordinates.
         * 1/w is returned as tmp[3] for perspective-correcting
         * the texture coordinates.
         */
        DoTransform(quadV[ii], tmp);

        /* Ideally the colors will be computed by the lighting equation,
         * but I've hard-coded values for this example.
         */
        glColor3fv(quadC[ii]);

        /* Scale by 1/w (stored in tmp[3]) */
        glTexCoord4f(quadT[ii][0] * tmp[3],
                     quadT[ii][1] * tmp[3], 0.0f, tmp[3]);

        /* Note I am using Vertex3, not Vertex4, since we have already
         * performed the perspective divide.
         */
        glVertex3fv(tmp);
    }

    glEnd();

    glutSwapBuffers();
}

void Motion(void)
{
    rot += 3.0f;
    if (rot >= 360.0f) rot -= 360.0f;
    UpdateModelView();
    Redraw();
}

/* ARGSUSED1 */
void Key(unsigned char key, int x, int y)
{
    switch (key) {
    case 27:
        exit(0);
    case 'm':
        motion = !motion;
        glutIdleFunc(motion ? Motion : NULL);
        break;
    }
}

/* ARGSUSED1 */
void Button(int button, int state, int x, int y)
{
    switch (button) {
    case GLUT_LEFT_BUTTON:
        if (state == GLUT_DOWN) {
            rot -= 15.0f;
            UpdateModelView();
            Redraw();
        }
        break;
    case GLUT_RIGHT_BUTTON:
        if (state == GLUT_DOWN) {
            rot += 15.0f;
            UpdateModelView();
            Redraw();
        }
        break;
    }
}

void Reshape(int width, int height)
{
    glMatrixMode(GL_PROJECTION);
    glLoadIdentity();
    glOrtho(0.0f, (GLfloat) width, 0.0f, (GLfloat) height, -1.0f, 1.0f);

    glMatrixMode(GL_MODELVIEW);
    glLoadIdentity();

    glViewport(0, 0, width, height);

    Viewport[0] = Viewport[1] = 0.0f;
    Viewport[2] = (GLfloat) width;
    Viewport[3] = (GLfloat) height;
}

int
main(int argc, char *argv[])
{
    char *t;
    glutInit(&argc, argv);
    glutInitDisplayMode(GLUT_RGB|GLUT_DOUBLE|GLUT_DEPTH);
    glutInitWindowSize(400, 400);
    glutCreateWindow((t=strrchr(argv[0], '\\')) != NULL ? t+1 : argv[0]);

    Init();

    glutDisplayFunc(Redraw);
    glutReshapeFunc(Reshape);
    glutKeyboardFunc(Key);
    glutMouseFunc(Button);
    glutIdleFunc(Motion);

    glutMainLoop();

    return 0;
}