1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519
|
/*
* MODULE NAME: ex_angle.c
*
* FUNCTION:
* This module contains code that draws extrusions with angled
* joins ("angle join style"). It also inserts colors and normals
* where necessary, if appropriate.
*
* HISTORY:
* written by Linas Vepstas August/September 1991
* split into multiple compile units, Linas, October 1991
* added normal vectors Linas, October 1991
* "code complete" (that is, I'm done), Linas Vepstas, October 1991
* work around OpenGL's lack of support for concave polys, June 1994
*/
#include <stdlib.h>
#include <math.h>
#include <string.h> /* for the memcpy() subroutine */
#include <GL/tube.h>
#include "port.h"
#include "gutil.h"
#include "vvector.h"
#include "tube_gc.h"
#include "extrude.h"
#include "intersect.h"
#include "segment.h"
/* ============================================================ */
/*
* Algorithmic trivia:
*
* There is a slight bit of trivia which the super-duper exacto coder
* needs to know about the code in this module. It is this:
*
* This module attempts to correctly treat contour normal vectors
* by applying the inverse transpose of the 2D contour affine
* transformation to the 2D contour normals. This is perfectly correct,
* when applied to the "raw" join style. However, if the affine transform
* has a strong rotational component, AND the join style is angle or
* cut, then the normal vectors would continue to rotate as the
* intersect point is extrapolated.
*
* The extrapolation of the inverse-transpose matrix to the intersection
* point is not done. This would appear to be overkill for most
* situations. The viewer might possibly detect an artifact of the
* failure to do this correction IF all three of the following criteria
* were met:
* 1) The affine xform has a strong rotational component,
* 2) The angle between two succesive segments is sharp (greater than 15 or
* 30 degrees).
* 3) The join style is angle or cut.
*
* However, I beleive that it is highly unlikely that the viewer will
* detect any artifacts. The reason I beleive this is that a strong
* rotational component will twist a segment so strongly that the more
* visible artifact will be that a segment is composed of triangle strips.
* As the user attempts to minimize the tesselation artifacts by shortening
* segments, then the rotational component will decrease in proportion,
* and the lighting artifact will fall away.
*
* To summarize, there is a slight inexactness in this code. The author
* of the code beleives that this inexactness results in miniscule
* errors in every situation.
*
* Linas Vepstas March 1993
*/
/* ============================================================ */
void draw_angle_style_front_cap (int ncp, /* number of contour points */
gleDouble bi[3], /* biscetor */
gleDouble point_array[][3]) /* polyline */
{
int j;
#ifdef OPENGL_10
GLUtriangulatorObj *tobj;
#endif /* OPENGL_10 */
if (bi[2] < 0.0) {
VEC_SCALE (bi, -1.0, bi);
}
#ifdef GL_32
/* old-style gl handles concave polygons no problem, so the code is
* simple. New-style gl is a lot more tricky. */
/* draw the end cap */
BGNPOLYGON ();
N3F (bi);
for (j=0; j<ncp; j++) {
V3F (point_array[j], j, FRONT_CAP);
}
ENDPOLYGON ();
#endif /* GL_32 */
#ifdef OPENGL_10
N3F(bi);
tobj = gluNewTess ();
gluTessCallback (tobj, GLU_BEGIN, glBegin);
gluTessCallback (tobj, GLU_VERTEX, glVertex3dv);
gluTessCallback (tobj, GLU_END, glEnd);
gluBeginPolygon (tobj);
for (j=0; j<ncp; j++) {
gluTessVertex (tobj, point_array[j], point_array[j]);
}
gluEndPolygon (tobj);
gluDeleteTess (tobj);
#endif /* OPENGL_10 */
}
/* ============================================================ */
void draw_angle_style_back_cap (int ncp, /* number of contour points */
gleDouble bi[3], /* biscetor */
gleDouble point_array[][3]) /* polyline */
{
int j;
#ifdef OPENGL_10
GLUtriangulatorObj *tobj;
#endif /* OPENGL_10 */
if (bi[2] > 0.0) {
VEC_SCALE (bi, -1.0, bi);
}
#ifdef GL_32
/* old-style gl handles concave polygons no problem, so the code is
* simple. New-style gl is a lot more tricky. */
/* draw the end cap */
BGNPOLYGON ();
N3F (bi);
for (j=ncp-1; j>=0; j--) {
V3F (point_array[j], j, BACK_CAP);
}
ENDPOLYGON ();
#endif /* GL_32 */
#ifdef OPENGL_10
N3F (bi);
tobj = gluNewTess ();
gluTessCallback (tobj, GLU_BEGIN, glBegin);
gluTessCallback (tobj, GLU_VERTEX, glVertex3dv);
gluTessCallback (tobj, GLU_END, glEnd);
gluBeginPolygon (tobj);
for (j=ncp-1; j>=0; j--) {
gluTessVertex (tobj, point_array[j], point_array[j]);
}
gluEndPolygon (tobj);
gluDeleteTess (tobj);
#endif /* OPENGL_10 */
}
/* ============================================================ */
void extrusion_angle_join (int ncp, /* number of contour points */
gleDouble contour[][2], /* 2D contour */
gleDouble cont_normal[][2], /* 2D normal vecs */
gleDouble up[3], /* up vector for contour */
int npoints, /* numpoints in poly-line */
gleDouble point_array[][3], /* polyline */
float color_array[][3], /* color of polyline */
gleDouble xform_array[][2][3]) /* 2D contour xforms */
{
int i, j;
int inext, inextnext;
gleDouble m[4][4];
gleDouble len;
gleDouble len_seg;
gleDouble diff[3];
gleDouble bi_0[3], bi_1[3]; /* bisecting plane */
gleDouble bisector_0[3], bisector_1[3]; /* bisecting plane */
gleDouble end_point_0[3], end_point_1[3];
gleDouble origin[3], neg_z[3];
gleDouble yup[3]; /* alternate up vector */
gleDouble *front_loop, *back_loop; /* contours in 3D */
char * mem_anchor;
double *norm_loop;
double *front_norm, *back_norm, *tmp; /* contour normals in 3D */
int first_time;
/* By definition, the contour passed in has its up vector pointing in
* the y direction */
if (up == NULL) {
yup[0] = 0.0;
yup[1] = 1.0;
yup[2] = 0.0;
} else {
VEC_COPY(yup, up);
}
/* ========== "up" vector sanity check ========== */
(void) up_sanity_check (yup, npoints, point_array);
/* the origin is at the origin */
origin [0] = 0.0;
origin [1] = 0.0;
origin [2] = 0.0;
/* and neg_z is at neg z */
neg_z[0] = 0.0;
neg_z[1] = 0.0;
neg_z[2] = 1.0;
/* ignore all segments of zero length */
i = 1;
inext = i;
FIND_NON_DEGENERATE_POINT (inext, npoints, len, diff, point_array);
len_seg = len; /* store for later use */
/* get the bisecting plane */
bisecting_plane (bi_0, point_array[0],
point_array[1],
point_array[inext]);
/* reflect the up vector in the bisecting plane */
VEC_REFLECT (yup, yup, bi_0);
/* malloc the storage we'll need for relaying changed contours to the
* drawing routines. */
mem_anchor = malloc (2 * 3 * ncp * sizeof(double)
+ 2 * 3 * ncp * sizeof(gleDouble));
front_loop = (gleDouble *) mem_anchor;
back_loop = front_loop + 3 * ncp;
front_norm = (double *) (back_loop + 3 * ncp);
back_norm = front_norm + 3 * ncp;
norm_loop = front_norm;
/* may as well get the normals set up now */
if (cont_normal != NULL) {
if (xform_array == NULL) {
for (j=0; j<ncp; j++) {
norm_loop[3*j] = cont_normal[j][0];
norm_loop[3*j+1] = cont_normal[j][1];
norm_loop[3*j+2] = 0.0;
}
} else {
for (j=0; j<ncp; j++) {
NORM_XFORM_2X2 ( (&front_norm[3*j]),
xform_array[inext-1],
cont_normal [j]);
front_norm[3*j+2] = 0.0;
back_norm[3*j+2] = 0.0;
}
}
}
first_time = TRUE;
/* draw tubing, not doing the first segment */
while (inext<npoints-1) {
inextnext = inext;
/* ignore all segments of zero length */
FIND_NON_DEGENERATE_POINT (inextnext, npoints, len, diff, point_array);
/* get the next bisecting plane */
bisecting_plane (bi_1, point_array[i],
point_array[inext],
point_array[inextnext]);
/* rotate so that z-axis points down v2-v1 axis,
* and so that origen is at v1 */
uviewpoint (m, point_array[i], point_array[inext], yup);
PUSHMATRIX ();
MULTMATRIX (m);
/* rotate the bisecting planes into the local coordinate system */
MAT_DOT_VEC_3X3 (bisector_0, m, bi_0);
MAT_DOT_VEC_3X3 (bisector_1, m, bi_1);
neg_z[2] = -len_seg;
/* draw the tube */
/* --------- START OF TMESH GENERATION -------------- */
for (j=0; j<ncp; j++) {
/* if there are normals, and there are either affine xforms, OR
* path-edge normals need to be drawn, then compute local
* coordinate system normals.
*/
if (cont_normal != NULL) {
/* set up the back normals. (The front normals we inherit
* from previous pass through the loop) */
if (xform_array != NULL) {
/* do up the normal vectors with the inverse transpose */
NORM_XFORM_2X2 ( (&back_norm[3*j]),
xform_array[inext],
cont_normal [j]);
}
/* Note that if the xform array is NULL, then normals are
* constant, and are set up outside of the loop.
*/
/*
* if there are normal vectors, and the style calls for it,
* then we want to project the normal vectors into the
* bisecting plane. (This style is needed to make toroids, etc.
* look good: Without this, segmentation artifacts show up
* under lighting.
*/
if (__TUBE_DRAW_PATH_EDGE_NORMALS) {
/* Hmm, if no affine xforms, then we haven't yet set
* back vector. So do it. */
if (xform_array == NULL) {
back_norm[3*j] = cont_normal[j][0];
back_norm[3*j+1] = cont_normal[j][1];
}
/* now, start with a fresh normal (z component equal to
* zero), project onto bisecting plane (by computing
* perpendicular componenet to bisect vector, and renormalize
* (since projected vector is not of unit length */
front_norm[3*j+2] = 0.0;
VEC_PERP ((&front_norm[3*j]), (&front_norm[3*j]), bisector_0);
VEC_NORMALIZE ((&front_norm[3*j]));
back_norm[3*j+2] = 0.0;
VEC_PERP ((&back_norm[3*j]), (&back_norm[3*j]), bisector_1);
VEC_NORMALIZE ((&back_norm[3*j]));
}
}
/* Next, we want to define segements. We find the endpoints of
* the segments by intersecting the contour with the bisecting
* plane. If there is no local affine transform, this is easy.
*
* If there is an affine tranform, then we want to remove the
* torsional component, so that the intersection points won't
* get twisted out of shape. We do this by applying the
* local affine transform to the entire coordinate system.
*/
if (xform_array == NULL) {
end_point_0 [0] = contour[j][0];
end_point_0 [1] = contour[j][1];
end_point_1 [0] = contour[j][0];
end_point_1 [1] = contour[j][1];
} else {
/* transform the contour points with the local xform */
MAT_DOT_VEC_2X3 (end_point_0,
xform_array[inext-1], contour[j]);
MAT_DOT_VEC_2X3 (end_point_1,
xform_array[inext-1], contour[j]);
}
end_point_0 [2] = 0.0;
end_point_1 [2] = - len_seg;
/* The two end-points define a line. Intersect this line
* against the clipping plane defined by the PREVIOUS
* tube segment. */
INNERSECT ((&front_loop[3*j]), /* intersection point (returned) */
origin, /* point on intersecting plane */
bisector_0, /* normal vector to plane */
end_point_0, /* point on line */
end_point_1); /* another point on the line */
/* The two end-points define a line. Intersect this line
* against the clipping plane defined by the NEXT
* tube segment. */
/* if there's an affine coordinate change, be sure to use it */
if (xform_array != NULL) {
/* transform the contour points with the local xform */
MAT_DOT_VEC_2X3 (end_point_0,
xform_array[inext], contour[j]);
MAT_DOT_VEC_2X3 (end_point_1,
xform_array[inext], contour[j]);
}
INNERSECT ((&back_loop[3*j]), /* intersection point (returned) */
neg_z, /* point on intersecting plane */
bisector_1, /* normal vector to plane */
end_point_0, /* point on line */
end_point_1); /* another point on the line */
}
/* --------- END OF TMESH GENERATION -------------- */
/* v^v^v^v^v^v^v^v^v BEGIN END CAPS v^v^v^v^v^v^v^v^v^v^v^v */
/* if end caps are required, draw them. But don't draw any
* but the very first and last caps */
if (__TUBE_DRAW_CAP) {
if (first_time) {
if (color_array != NULL) C3F (color_array[inext-1]);
first_time = FALSE;
draw_angle_style_front_cap (ncp, bisector_0, (gleVector *) front_loop);
}
if (inext == npoints-2) {
if (color_array != NULL) C3F (color_array[inext]);
draw_angle_style_back_cap (ncp, bisector_1, (gleVector *) back_loop);
}
}
/* v^v^v^v^v^v^v^v^v END END CAPS v^v^v^v^v^v^v^v^v^v^v^v */
/* |||||||||||||||||| START SEGMENT DRAW |||||||||||||||||||| */
/* There are six different cases we can have for presence and/or
* absecnce of colors and normals, and for interpretation of
* normals. The blechy set of nested if statements below
* branch to each of the six cases */
if ((xform_array == NULL) && (!__TUBE_DRAW_PATH_EDGE_NORMALS)) {
if (color_array == NULL) {
if (cont_normal == NULL) {
draw_segment_plain (ncp, (gleVector *) front_loop,
(gleVector *) back_loop, inext, len_seg);
} else
if (__TUBE_DRAW_FACET_NORMALS) {
draw_segment_facet_n (ncp, (gleVector *) front_loop,
(gleVector *) back_loop,
(gleVector *) norm_loop, inext, len_seg);
} else {
draw_segment_edge_n (ncp, (gleVector *) front_loop,
(gleVector *) back_loop,
(gleVector *) norm_loop, inext, len_seg);
}
} else {
if (cont_normal == NULL) {
draw_segment_color (ncp, (gleVector *) front_loop,
(gleVector *) back_loop,
color_array[inext-1],
color_array[inext], inext, len_seg);
} else
if (__TUBE_DRAW_FACET_NORMALS) {
draw_segment_c_and_facet_n (ncp,
(gleVector *) front_loop,
(gleVector *) back_loop,
(gleVector *) norm_loop,
color_array[inext-1],
color_array[inext], inext, len_seg);
} else {
draw_segment_c_and_edge_n (ncp,
(gleVector *) front_loop,
(gleVector *) back_loop,
(gleVector *) norm_loop,
color_array[inext-1],
color_array[inext], inext, len_seg);
}
}
} else {
if (color_array == NULL) {
if (cont_normal == NULL) {
draw_segment_plain (ncp, (gleVector *) front_loop,
(gleVector *) back_loop, inext, len_seg);
} else
if (__TUBE_DRAW_FACET_NORMALS) {
draw_binorm_segment_facet_n (ncp, (gleVector *) front_loop,
(gleVector *) back_loop,
(gleVector *) front_norm,
(gleVector *) back_norm,
inext, len_seg);
} else {
draw_binorm_segment_edge_n (ncp, (gleVector *) front_loop,
(gleVector *) back_loop,
(gleVector *) front_norm,
(gleVector *) back_norm,
inext, len_seg);
}
} else {
if (cont_normal == NULL) {
draw_segment_color (ncp, (gleVector *) front_loop,
(gleVector *) back_loop,
color_array[inext-1],
color_array[inext], inext, len_seg);
} else
if (__TUBE_DRAW_FACET_NORMALS) {
draw_binorm_segment_c_and_facet_n (ncp,
(gleVector *) front_loop,
(gleVector *) back_loop,
(gleVector *) front_norm,
(gleVector *) back_norm,
color_array[inext-1],
color_array[inext], inext, len_seg);
} else {
draw_binorm_segment_c_and_edge_n (ncp,
(gleVector *) front_loop,
(gleVector *) back_loop,
(gleVector *) front_norm,
(gleVector *) back_norm,
color_array[inext-1],
color_array[inext], inext, len_seg);
}
}
}
/* |||||||||||||||||| END SEGMENT DRAW |||||||||||||||||||| */
/* pop this matrix, do the next set */
POPMATRIX ();
/* bump everything to the next vertex */
len_seg = len;
i = inext;
inext = inextnext;
VEC_COPY (bi_0, bi_1);
/* trade norm loops */
tmp = front_norm;
front_norm = back_norm;
back_norm = tmp;
/* reflect the up vector in the bisecting plane */
VEC_REFLECT (yup, yup, bi_0);
}
/* be sure to free it all up */
free (mem_anchor);
}
/* ============================================================ */
|