1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281
|
// Copyright (c) 2010-2026, Lawrence Livermore National Security, LLC. Produced
// at the Lawrence Livermore National Laboratory. All Rights reserved. See files
// LICENSE and NOTICE for details. LLNL-CODE-443271.
//
// This file is part of the GLVis visualization tool and library. For more
// information and source code availability see https://glvis.org.
//
// GLVis is free software; you can redistribute it and/or modify it under the
// terms of the BSD-3 license. We welcome feedback and contributions, see file
// CONTRIBUTING.md for details.
#ifndef GLVIS_DATA_STATE_HPP
#define GLVIS_DATA_STATE_HPP
#include <map>
#include <string>
#include <memory>
#include <vector>
#include <utility>
#include <functional>
#include <mfem.hpp>
#include "openglvis.hpp"
struct DataState
{
enum class FieldType
{
UNKNOWN = -1,
MIN = -1,
//----------
MESH,
SCALAR,
VECTOR,
//----------
MAX
};
enum class QuadSolution
{
NONE = -1,
MIN = -1,
//----------
LOR_ClosedGL,
HO_L2_collocated,
HO_L2_projected,
//----------
MAX
};
enum class ComplexSolution
{
NONE = -1,
MIN = -1,
//----------
Magnitude,
Phase,
Real,
Imag,
//----------
MAX
};
// Class used for storing offsets and map of DOFs for each rank
class Offset
{
std::map<std::pair<int, int>, int> dof;
public:
int nelems, nedges, nverts;
#ifdef GLVIS_DEBUG
// in debug mode, we store the element centers
// to be able to compare them with the ones of the global mesh,
// as it could depend on the way the global mesh is constructed
// from the array of 'local' ones.
struct xy {double x,y;};
std::map<std::pair<int, int>, xy> exy_map;
#endif
Offset() = default;
int& operator[](const std::pair<int, int> &key) { return dof[key]; }
const int& operator[](const std::pair<int, int> &key) const { return dof.at(key); }
};
using Offsets = std::vector<Offset>;
private:
struct
{
std::unique_ptr<mfem::Vector> sol, solx, soly, solz;
std::unique_ptr<mfem::Vector> normals;
std::unique_ptr<mfem::Mesh> mesh;
std::unique_ptr<mfem::Mesh> mesh_quad;
std::unique_ptr<mfem::GridFunction> grid_f;
std::unique_ptr<mfem::ComplexGridFunction> cgrid_f;
std::unique_ptr<mfem::QuadratureFunction> quad_f;
std::unique_ptr<mfem::DataCollection> data_coll;
std::unique_ptr<Offsets> offsets;
} internal;
FieldType type {FieldType::UNKNOWN};
ComplexSolution cmplx_sol {ComplexSolution::NONE};
QuadSolution quad_sol {QuadSolution::NONE};
void SetGridFunctionSolution(int component = -1);
void SetComplexFunctionSolution(int component = -1);
void SetQuadFunctionSolution(int component = -1);
static std::unique_ptr<mfem::GridFunction>
ProjectVectorFEGridFunction(std::unique_ptr<mfem::GridFunction> gf);
static std::unique_ptr<mfem::ComplexGridFunction>
ProjectVectorFEGridFunction(std::unique_ptr<mfem::ComplexGridFunction> gf);
void FindComplexValueRange(double &minv, double &maxv,
std::function<double(double)> = {}) const;
void FindComplexValueRange(double &minv, double &maxv,
std::function<double(const mfem::Vector &)>,
std::function<double(double)> = {}) const;
/// Compute the dofs offsets from the grid function vector
void ComputeDofsOffsets(std::vector<const mfem::FiniteElementSpace*> &fespaces);
public:
const std::unique_ptr<mfem::Vector> &sol{internal.sol};
const std::unique_ptr<mfem::Vector> &solx{internal.solx};
const std::unique_ptr<mfem::Vector> &soly{internal.soly};
const std::unique_ptr<mfem::Vector> &solz{internal.solz};
const std::unique_ptr<mfem::Vector> &normals{internal.normals};
const std::unique_ptr<mfem::Mesh> &mesh{internal.mesh};
const std::unique_ptr<mfem::Mesh> &mesh_quad{internal.mesh_quad};
const std::unique_ptr<mfem::GridFunction> &grid_f{internal.grid_f};
const std::unique_ptr<mfem::ComplexGridFunction> &cgrid_f{internal.cgrid_f};
const std::unique_ptr<mfem::QuadratureFunction> &quad_f{internal.quad_f};
const std::unique_ptr<mfem::DataCollection> &data_coll{internal.data_coll};
const std::unique_ptr<Offsets> &offsets{internal.offsets};
std::string keys;
bool fix_elem_orient{false};
bool save_coloring{false};
bool keep_attr{false};
double cmplx_phase{0.};
DataState() = default;
DataState(DataState &&ss) { *this = std::move(ss); }
DataState& operator=(DataState &&ss);
/// Get type of the contained data
inline FieldType GetType() const { return type; }
/// Set a mesh (plain pointer version)
/** Note that ownership is passed from the caller.
@see SetMesh(std::unique_ptr<mfem::Mesh> &&pmesh) */
void SetMesh(mfem::Mesh *mesh);
/// Set a mesh (unique pointer version)
/** Sets the mesh and resets grid/quadrature functions if they do not use
the same one. */
void SetMesh(std::unique_ptr<mfem::Mesh> &&pmesh);
/// Set scalar data
void SetScalarData(mfem::Vector sol);
/// Set normals
void SetNormals(mfem::Vector normals);
/// Set 2D vector data
void SetVectorData(mfem::Vector solx, mfem::Vector soly);
/// Set 3D vector data
void SetVectorData(mfem::Vector solx, mfem::Vector soly, mfem::Vector solz);
/// Set a grid function (plain pointer version)
/** Note that ownership is passed from the caller.
@see SetGridFunction(std::unique_ptr<mfem::GridFunction> &&, int ) */
void SetGridFunction(mfem::GridFunction *gf, int component = -1);
/// Set a grid function (unique pointer version)
/** Sets the grid function or its component (-1 means all components). */
void SetGridFunction(std::unique_ptr<mfem::GridFunction> &&pgf,
int component = -1);
/// Set a grid function from pieces
/** Serializes the pieces of a grid function and sets it or its
component (-1 means all components) */
void SetGridFunction(std::vector<mfem::GridFunction*> &gf_array,
int num_pieces, int component = -1);
/// Set a complex grid function (plain pointer version)
/** Note that ownership is passed from the caller.
@see SetCmplxGridFunction(std::unique_ptr<mfem::ComplexGridFunction> &&, int ) */
void SetCmplxGridFunction(mfem::ComplexGridFunction *gf, int component = -1);
/// Set a complex grid function (unique pointer version)
/** Sets the complex grid function or its component (-1 means all
components). */
void SetCmplxGridFunction(std::unique_ptr<mfem::ComplexGridFunction> &&pgf,
int component = -1);
/// Set a complex grid function from pieces
/** Serializes the pieces of a complex grid function and sets it or its
component (-1 means all components) */
void SetCmplxGridFunction(const std::vector<mfem::ComplexGridFunction*>
&cgf_array, int component = -1);
/// Set a quadrature function (plain pointer version)
/** Note that ownership is passed from the caller.
@see SetQuadFunction(std::unique_ptr<mfem::QuadFunction> &&, int ) */
void SetQuadFunction(mfem::QuadratureFunction *qf, int component = -1);
/// Set a quadrature function (unique pointer version)
/** Sets the quadrature function or its component (-1 means all components). */
void SetQuadFunction(std::unique_ptr<mfem::QuadratureFunction> &&pqf,
int component = -1);
/// Set a quadrature function from pieces
/** Serializes the pieces of a quadrature function and sets it or its
component (-1 means all components) */
void SetQuadFunction(const std::vector<mfem::QuadratureFunction*> &qf_array,
int component = -1);
/// Set a data collection field
/** Sets the mesh and optionally a grid or quadrature function from the
provided data collection.
@param dc data collection
@param ti cycle to load
@param field name of the (Q-)field to load (NULL for mesh only)
@param quad if true, Q-field is loaded, otherwise a regular field
@param component component of the field (-1 means all components) */
void SetDataCollectionField(mfem::DataCollection *dc, int ti,
const char *field = NULL, bool quad = false, int component = -1);
/// Helper function for visualizing 1D or 2D3V data
void ExtrudeMeshAndSolution();
/// Helper function for visualizing 1D data
void Extrude1DMeshAndSolution();
/// Helper function for visualization of 2D3V data
void Extrude2D3VMeshAndSolution();
/// Set a (checkerboard) solution when only the mesh is given
void SetMeshSolution();
/// Set the complex function representation producing a proxy grid function
void SetComplexSolution(ComplexSolution type = ComplexSolution::Magnitude,
bool print = true);
/// Get the current representation of complex solution
inline ComplexSolution GetComplexSolution() const { return cmplx_sol; }
/// Set the quadrature function representation producing a proxy grid function
void SetQuadSolution(QuadSolution type = QuadSolution::LOR_ClosedGL);
/// Switch the quadrature function representation
void SwitchQuadSolution(QuadSolution type);
/// Get the current representation of quadrature solution
inline QuadSolution GetQuadSolution() const { return quad_sol; }
// Replace a given VectorFiniteElement-based grid function (e.g. from a Nedelec
// or Raviart-Thomas space) with a discontinuous piece-wise polynomial Cartesian
// product vector grid function of the same order.
void ProjectVectorFEGridFunction();
/// Find value range of the scalar data for an intermediate representation
/** Returns @p minv = @p maxv = 0 if the range should be normally determined
from the grid function representation. */
void FindValueRange(double &minv, double &maxv,
std::function<double(double)> scale = {}) const
{ if (cgrid_f) { FindComplexValueRange(minv, maxv, scale); } else { minv = maxv = 0.; } }
/// Find value range of the vector data for an intermediate representation
/** Returns @p minv = @p maxv = 0 if the range should be normally determined
from the grid function representation. */
void FindValueRange(double &minv, double &maxv,
std::function<double(const mfem::Vector &)> vec2scal,
std::function<double(double)> scale = {}) const
{ if (cgrid_f) { FindComplexValueRange(minv, maxv, vec2scal, scale); } else { minv = maxv = 0.; } }
};
#endif // GLVIS_DATA_STATE_HPP
|