1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342
|
// Copyright (c) 2010-2026, Lawrence Livermore National Security, LLC. Produced
// at the Lawrence Livermore National Laboratory. All Rights reserved. See files
// LICENSE and NOTICE for details. LLNL-CODE-443271.
//
// This file is part of the GLVis visualization tool and library. For more
// information and source code availability see https://glvis.org.
//
// GLVis is free software; you can redistribute it and/or modify it under the
// terms of the BSD-3 license. We welcome feedback and contributions, see file
// CONTRIBUTING.md for details.
#ifndef GLVIS_VSDATA_HPP
#define GLVIS_VSDATA_HPP
#include <mfem.hpp>
#include "openglvis.hpp"
#include "aux_vis.hpp"
#include "window.hpp"
class Plane
{
private:
double eqn[4];
double phi, theta, rho;
double x0,y0,z0;
void CartesianToSpherical();
void SphericalToCartesian();
double bbox_diam;
double phi_step, theta_step, rho_step;
public:
Plane(double A,double B,double C,double D);
inline double * Equation() { return eqn; }
inline double Transform(double x, double y, double z)
{ return eqn[0]*x+eqn[1]*y+eqn[2]*z+eqn[3]; }
inline double Transform(double * x)
{ return eqn[0]*x[0]+eqn[1]*x[1]+eqn[2]*x[2]+eqn[3]; }
void IncreasePhi();
void DecreasePhi();
void IncreaseTheta();
void DecreaseTheta();
void IncreaseDistance();
void DecreaseDistance();
};
class VisualizationSceneScalarData : public VisualizationScene
{
public:
enum class Shading
{
Invalid = -1,
Min = -1,
//---------
Flat,
Smooth,
Noncomforming,
//---------
Max
};
// autoscale controls the behavior when the mesh/solution are updated
enum class Autoscale
{
Invalid = -1,
Min = -1,
//---------
None, // do not change the bounding box and the value range
MeshAndValue, // recompute both the bounding box and the value range (default)
Value, // recompute only the value range
Mesh, // recompute only the bounding box
//---------
Max
};
protected:
mfem::Mesh *mesh{}, *mesh_coarse{};
mfem::Vector *sol{};
const DataState::Offsets *offsets{};
Window &win;
double minv, maxv;
std::string a_label_x{"x"}, a_label_y{"y"}, a_label_z{"z"};
int scaling, colorbar, drawaxes;
Shading shading;
int auto_ref_max, auto_ref_min_surf_vert, auto_ref_max_surf_vert;
bool legacy_parallel_numbering = false;
// Formatter for axes & colorbar numbers. Set defaults.
std::function<std::string(double)> axis_formatter
= NumberFormatter(4, 'd', false);
std::function<std::string(double)> colorbar_formatter
= NumberFormatter(4, 'd', false);
std::vector<gl3::GlDrawable*> updated_bufs;
gl3::GlDrawable axes_buf;
gl3::GlDrawable coord_cross_buf;
gl3::GlDrawable color_bar;
gl3::GlDrawable ruler_buf;
gl3::GlDrawable caption_buf;
int caption_w, caption_h;
void Init();
int arrow_type, arrow_scaling_type;
int nl;
mfem::Array<double> level;
int ruler_on;
double ruler_x, ruler_y, ruler_z;
Autoscale autoscale;
bool logscale;
bool LogscaleRange() { return (minv > 0.0 && maxv > minv); }
void PrintLogscale(bool warn);
double log_a, unit_a;
void SetLogA()
{
if (logscale)
{
unit_a = 1.0/log(maxv/minv), log_a = (maxv - minv)*unit_a;
}
else
{
unit_a = 1.0/(maxv - minv), log_a = 1.0;
}
}
double _ULogVal(const double &u) { return minv*pow(maxv/minv, u); }
double ULogVal(const double &u)
{ return (logscale ? _ULogVal(u) : minv + (maxv - minv)*u); }
double LogUVal(const double &z)
{
return ((logscale && z >= minv && z <= maxv) ?
(log(z/minv)*unit_a) : (z - minv)*unit_a);
}
double _LogVal_(const double &z) { return (log(z/minv)*log_a + minv); }
double _LogVal(const double &z)
{ return ((z >= minv && z <= maxv) ? _LogVal_(z) : (z)); }
double LogVal(const double &z, const bool &log_val)
{ return (log_val ? _LogVal(z) : z); }
double LogVal(const double &z) { return LogVal(z, logscale); }
void FixValueRange();
static int GetFunctionAutoRefineFactor(mfem::GridFunction &gf);
virtual int GetFunctionAutoRefineFactor() = 0;
virtual int GetAutoRefineFactor();
void Cone(gl3::GlDrawable& buf, glm::mat4 transform, double cval);
public:
Plane *CuttingPlane;
int key_r_state;
/** Shrink factor with respect to the center of each element (2D) or the
center of each boundary attribute (3D) */
double shrink;
/// Shrink factor with respect to the element (material) attributes centers
double shrinkmat;
VisualizationSceneScalarData(Window &win, bool init = true);
virtual ~VisualizationSceneScalarData();
/// Set a new mesh and solution from the given data state
virtual void NewMeshAndSolution(const DataState &s) = 0;
virtual std::string GetHelpString() const { return ""; }
// Determine 'xscale', 'yscale', and 'zscale' using the current bounding
// box, depending on the value of 'scaling'.
virtual void SetNewScalingFromBox();
// Compute the bounding box, call UpdateBoundingBox.
// In 2D the z range is the value range, so FixValueRange and
// UpdateValueRange are also called.
virtual void FindNewBox(bool prepare) = 0;
// Compute the value range based on the current solution, adjust it by
// calling FixValueRange and then call UpdateValueRange.
virtual void FindNewValueRange(bool prepare) = 0;
// Redefined in 2D to call just FindNewBox
virtual void FindNewBoxAndValueRange(bool prepare)
{ FindNewBox(prepare); FindNewValueRange(prepare); }
// Redefined in 2D to update only the x- and y-ranges.
virtual void FindMeshBox(bool prepare) { FindNewBox(prepare); }
// Perform autoscaling depending on the value of 'autoscale':
// None - do nothing
// MeshAndValue - call FindNewBoxAndValueRange
// Value - call FindNewValueRange
// Mesh - call FindMeshBox
void DoAutoscale(bool prepare);
// Similar to the above but force recomputation of the value range
void DoAutoscaleValue(bool prepare);
virtual void Prepare() = 0;
virtual void PrepareLines() = 0;
void UpdateBoundingBox() { SetNewScalingFromBox(); PrepareAxes(); }
virtual void EventUpdateBackground() { };
virtual void EventUpdateColors() { Prepare(); }
virtual void UpdateLevelLines() = 0;
virtual void UpdateValueRange(bool prepare) = 0;
void SetValueRange(double, double);
virtual void SetShading(Shading, bool) = 0;
virtual void ToggleShading() { SetShading((Shading)(((int)shading + 1) % (int)Shading::Max), true); }
virtual Shading GetShading() { return shading; }
virtual void SetRefineFactors(int, int) = 0;
void SetAutoRefineLimits(int max_ref, int max_surf_vert)
{
auto_ref_max = max_ref;
auto_ref_max_surf_vert = max_surf_vert;
}
virtual void AutoRefine() = 0;
virtual void ToggleAttributes(mfem::Array<int> &attr_list) = 0;
virtual void PrintState();
mfem::Mesh *GetMesh() { return mesh; }
gl3::SceneInfo GetSceneObjs() override;
void UpdateComplexPhase(double ph) override { win.UpdateComplexPhase(ph); }
void ProcessUpdatedBufs(gl3::SceneInfo& scene);
void glTF_ExportBox(glTF_Builder &bld,
glTF_Builder::buffer_id buffer,
glTF_Builder::material_id black_mat);
void glTF_ExportElements(glTF_Builder &bld,
glTF_Builder::buffer_id buffer,
glTF_Builder::material_id palette_mat,
const gl3::GlDrawable &gl_drawable);
void glTF_ExportMesh(glTF_Builder &bld,
glTF_Builder::buffer_id buffer,
glTF_Builder::material_id black_mat,
const gl3::GlDrawable &gl_drawable);
virtual void glTF_Export();
double &GetMinV() { return minv; }
double &GetMaxV() { return maxv; }
void SetLevelLines(double min, double max, int n, int adj = 1);
void Arrow(gl3::GlDrawable& buffer,
double px, double py, double pz,
double vx, double vy, double vz, double length,
double cone_scale = 0.075,
double cval = HUGE_VAL);
void Arrow2(gl3::GlDrawable& buffer,
double px, double py, double pz,
double vx, double vy, double vz,
double length,
double cone_scale = 0.075,
double cval = HUGE_VAL);
void Arrow3(gl3::GlDrawable& buffer,
double px, double py, double pz,
double vx, double vy, double vz,
double length,
double cone_scale = 0.075,
double cval = HUGE_VAL);
void DrawPolygonLevelLines(gl3::GlBuilder& builder, double *point, int n,
mfem::Array<double> &level, bool log_vals);
void ToggleLight() { use_light = !use_light; }
void SetLight(bool light_set) { use_light = light_set; }
void ToggleDrawColorbar()
{
// colorbar states are: 0) no colorbar, no caption; 1) colorbar with
// caption; 2) colorbar without caption.
static const int next[2][3] = { { 1, 2, 0 }, { 2, 0, 0 } };
colorbar = next[win.plot_caption.empty()][colorbar];
}
// Turn on or off the caption
void PrepareCaption();
void SetColorbarNumberFormat(int precision, char format, bool showsign);
void SetColorbarNumberFormat(std::string formatting);
void PrepareColorBar(double minval, double maxval,
mfem::Array<double> * level = nullptr,
mfem::Array<double> * levels = nullptr);
void SetAxisLabels(const char * a_x, const char * a_y, const char * a_z);
void SetAxisNumberFormat(int precision, char format, bool showsign);
void SetAxisNumberFormat(std::string formatting);
void PrepareAxes();
void ToggleDrawAxes()
{
drawaxes = (drawaxes+1)%4;
if (drawaxes)
{
PrepareAxes();
}
}
void ToggleScaling()
{ scaling = !scaling; SetNewScalingFromBox(); }
virtual void ToggleLogscale(bool print);
void ToggleRuler();
void RulerPosition();
virtual void PrepareRuler() { PrepareRuler(logscale); }
void PrepareRuler(bool log_z);
void ToggleTexture();
void Toggle2DView();
void SetAutoscale(Autoscale _autoscale, bool update = true);
Autoscale GetAutoscale() const { return autoscale; }
/// Shrink the set of points towards attributes centers of gravity
void ShrinkPoints(mfem::DenseMatrix &pointmat, int i, int fn, int di);
// Centers of gravity based on the boundary/element attributes
mfem::DenseMatrix bdrc, matc;
/// Compute the center of gravity for each boundary attribute
void ComputeBdrAttrCenter();
/// Compute the center of gravity for each element attribute
void ComputeElemAttrCenter();
};
#endif
|