1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278
|
// Copyright (c) 2010-2026, Lawrence Livermore National Security, LLC. Produced
// at the Lawrence Livermore National Laboratory. All Rights reserved. See files
// LICENSE and NOTICE for details. LLNL-CODE-443271.
//
// This file is part of the GLVis visualization tool and library. For more
// information and source code availability see https://glvis.org.
//
// GLVis is free software; you can redistribute it and/or modify it under the
// terms of the BSD-3 license. We welcome feedback and contributions, see file
// CONTRIBUTING.md for details.
#include "window.hpp"
#include "visual.hpp"
Window &Window::operator=(Window &&w)
{
internal = std::move(w.internal);
data_state = std::move(w.data_state);
window_x = w.window_x;
window_y = w.window_y;
window_w = w.window_w;
window_h = w.window_h;
window_title = w.window_title;
headless = w.headless;
plot_caption = std::move(w.plot_caption);
extra_caption = std::move(w.extra_caption);
return *this;
}
// Visualize the data in the global variables mesh, sol/grid_f, etc
bool Window::GLVisInitVis(StreamCollection input_streams)
{
DataState::FieldType field_type = data_state.GetType();
if (field_type <= DataState::FieldType::MIN
|| field_type >= DataState::FieldType::MAX)
{
return false;
}
static const char *window_titles[] = { "GLVis [mesh]",
"GLVis [scalar data]",
"GLVis [vector data]",
};
const char *win_title = (window_title == nullptr) ?
window_titles[(int)field_type] : window_title;
GLWindow *new_wnd = InitVisualization(win_title, window_x, window_y, window_w,
window_h, headless);
if (new_wnd != wnd.get()) { internal.wnd.reset(new_wnd); }
if (!wnd)
{
std::cerr << "Initializing the visualization failed." << std::endl;
return false;
}
if (input_streams.size() > 0)
{
#ifndef __EMSCRIPTEN__
if (!headless)
{
wnd->setOnKeyDown(SDLK_SPACE, ThreadsPauseFunc);
}
#endif
internal.glvis_command.reset(new GLVisCommand(*this));
SetGLVisCommand(glvis_command.get());
#ifndef __EMSCRIPTEN__
constexpr bool multithreaded = true;
#else
constexpr bool multithreaded = false;
#endif
internal.comm_thread.reset(new communication_thread(std::move(input_streams),
glvis_command.get(), headless, multithreaded));
}
locwin = this;
double mesh_range = -1.0;
if (field_type == DataState::FieldType::SCALAR
|| field_type == DataState::FieldType::MESH)
{
if (data_state.mesh->SpaceDimension() == 2)
{
internal.vs.reset(new VisualizationSceneSolution(*this));
if (field_type == DataState::FieldType::MESH)
{
vs->OrthogonalProjection = 1;
vs->SetLight(false);
vs->Zoom(1.8);
// Use the 'bone' palette when visualizing a 2D mesh only (otherwise
// the 'jet-like' palette is used in 2D, see vssolution.cpp).
vs->palette.SetFallbackIndex(4);
}
}
else if (data_state.mesh->SpaceDimension() == 3)
{
VisualizationSceneSolution3d *vss;
vss = new VisualizationSceneSolution3d(*this);
internal.vs.reset(vss);
if (field_type == DataState::FieldType::MESH)
{
if (data_state.mesh->Dimension() == 3)
{
// Use the 'white' palette when visualizing a 3D volume mesh only
vss->palette.SetFallbackIndex(11);
vss->SetLightMatIdx(4);
}
else
{
// Use the 'bone' palette when visualizing a surface mesh only
vss->palette.SetFallbackIndex(4);
}
// Otherwise, the 'vivid' palette is used in 3D see vssolution3d.cpp
vss->ToggleDrawAxes();
vss->ToggleDrawMesh();
}
}
if (field_type == DataState::FieldType::MESH)
{
if (data_state.grid_f)
{
mesh_range = data_state.grid_f->Max() + 1.0;
}
else
{
mesh_range = data_state.sol->Max() + 1.0;
}
}
}
else if (field_type == DataState::FieldType::VECTOR)
{
if (data_state.mesh->SpaceDimension() == 2)
{
internal.vs.reset(new VisualizationSceneVector(*this));
}
else if (data_state.mesh->SpaceDimension() == 3)
{
if (data_state.grid_f)
{
data_state.ProjectVectorFEGridFunction();
}
internal.vs.reset(new VisualizationSceneVector3d(*this));
}
}
if (vs)
{
// increase the refinement factors if visualizing a GridFunction
if (data_state.grid_f)
{
vs->AutoRefine();
vs->SetShading(VisualizationSceneScalarData::Shading::Noncomforming, true);
}
if (mesh_range > 0.0)
{
vs->SetValueRange(-mesh_range, mesh_range);
vs->SetAutoscale(VisualizationSceneScalarData::Autoscale::None);
}
if (data_state.mesh->SpaceDimension() == 2
&& field_type == DataState::FieldType::MESH)
{
SetVisualizationScene(vs.get(), 2, data_state.keys.c_str());
}
else
{
SetVisualizationScene(vs.get(), 3, data_state.keys.c_str());
}
}
return true;
}
void Window::GLVisStartVis()
{
RunVisualization();
internal.vs.reset();
internal.wnd.reset();
if (glvis_command)
{
glvis_command->Terminate();
internal.comm_thread.reset();
internal.glvis_command.reset();
}
std::cout << "GLVis window closed." << std::endl;
}
void Window::SwitchComplexSolution(DataState::ComplexSolution cmplx_type)
{
data_state.SetComplexSolution(cmplx_type);
ResetMeshAndSolution(data_state);
}
void Window::SwitchQuadSolution(DataState::QuadSolution quad_type)
{
data_state.SwitchQuadSolution(quad_type);
ResetMeshAndSolution(data_state);
}
void Window::UpdateComplexPhase(double ph)
{
data_state.cmplx_phase += ph;
data_state.cmplx_phase -= floor(data_state.cmplx_phase);
DataState::ComplexSolution cs = data_state.GetComplexSolution();
// check if magnitude is viewed, which remains the same
if (cs == DataState::ComplexSolution::Magnitude) { return; }
data_state.SetComplexSolution(cs, false);
// do not autoscale for animation
auto as = vs->GetAutoscale();
vs->SetAutoscale(VisualizationSceneScalarData::Autoscale::None);
ResetMeshAndSolution(data_state);
vs->SetAutoscale(as, false);
}
bool Window::SetNewMeshAndSolution(DataState new_state)
{
if (new_state.mesh->SpaceDimension() == data_state.mesh->SpaceDimension() &&
new_state.GetType() == data_state.GetType() &&
(((new_state.grid_f && data_state.grid_f) &&
(new_state.grid_f->VectorDim() == data_state.grid_f->VectorDim()))
||(!new_state.grid_f && !data_state.grid_f)))
{
ResetMeshAndSolution(new_state);
data_state = std::move(new_state);
return true;
}
else
{
return false;
}
}
void Window::ResetMeshAndSolution(DataState &ss)
{
if (ss.mesh->SpaceDimension() == 3 &&
ss.GetType() == DataState::FieldType::VECTOR)
{
ss.ProjectVectorFEGridFunction();
}
vs->NewMeshAndSolution(ss);
}
thread_local Window *Window::locwin = NULL;
void Window::SwitchSolution()
{
if (locwin->data_state.cgrid_f)
{
SwitchComplexSolution();
}
else if (locwin->data_state.quad_f)
{
SwitchQuadSolution();
}
}
void Window::SwitchComplexSolution()
{
int ics = ((int)locwin->data_state.GetComplexSolution()+1)
% ((int)DataState::ComplexSolution::MAX);
locwin->SwitchComplexSolution((DataState::ComplexSolution)ics);
SendExposeEvent();
}
void Window::SwitchQuadSolution()
{
int iqs = ((int)locwin->data_state.GetQuadSolution()+1)
% ((int)DataState::QuadSolution::MAX);
locwin->SwitchQuadSolution((DataState::QuadSolution)iqs);
SendExposeEvent();
}
|