1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719
|
<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE refentry PUBLIC "-//OASIS//DTD DocBook XML V4.1.2//EN"
"http://www.oasis-open.org/docbook/xml/4.1.2/docbookx.dtd">
<!-- lifted from troff+man by doclifter -->
<refentry>
<!-- Hey, EMACS: \-*\- nroff \-*\- -->
<!-- First parameter, NAME, should be all caps -->
<!-- Second parameter, SECTION, should be 1\-8, maybe w/ subsection -->
<!-- other parameters are allowed: see man(7), man(1) -->
<refmeta>
<refentrytitle>ECM</refentrytitle>
<manvolnum>1</manvolnum>
<refmiscinfo class='source'>April 22, 2003</refmiscinfo>
</refmeta>
<refnamediv id='name'>
<refname>ecm</refname>
<refpurpose>integer factorization using ECM, P-1 or P+1</refpurpose>
</refnamediv>
<!-- body begins here -->
<refsynopsisdiv id='synopsis'>
<cmdsynopsis>
<command>ecm</command>
<arg choice='opt'><option>options</option></arg>
<arg choice='plain'><replaceable>B1</replaceable></arg>
<group choice='opt'><arg choice='plain'><replaceable>B2min</replaceable>-<replaceable>B2max</replaceable></arg><arg choice='plain'><replaceable>B2</replaceable></arg></group>
<sbr/>
</cmdsynopsis>
</refsynopsisdiv>
<refsect1 id='description'><title>DESCRIPTION</title>
<para>ecm is an integer factoring program using the Elliptic Curve
Method (ECM), the P-1 method, or the P+1 method.
The following sections describe parameters relevant to these
algorithms.</para>
</refsect1>
<refsect1 id='bounds'><title>STEP 1 AND STEP 2 BOUND PARAMETERS</title>
<variablelist remap='TP'>
<varlistentry>
<term><emphasis remap='B'><replaceable>B1</replaceable></emphasis></term>
<listitem>
<para><replaceable>B1</replaceable> is the step 1 bound. It is a mandatory parameter. It can be given
either in integer format (for example 3000000) or in floating-point
format (3000000.0 or 3e6). The largest possible <replaceable>B1</replaceable> value is
9007199254740996 for P-1, and ULONG_MAX or 9007199254740996 (whichever is
smaller) for ECM and P+1. All primes 2 <=
p <= <replaceable>B1</replaceable> are processed in step 1.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><emphasis remap='B'><replaceable>B2</replaceable></emphasis></term>
<listitem>
<para><replaceable>B2</replaceable> is the step 2 bound. It is optional: if
omitted, a default value is computed from <replaceable>B1</replaceable>, which
should be close to optimal. Like <replaceable>B1</replaceable>, it can be given
either in integer or in floating-point format. The largest possible value of
<replaceable>B2</replaceable> is approximately 9e23, but depends on the
number of blocks <replaceable>k</replaceable> if you specify the
<option>-k</option> option. All primes
<replaceable>B1</replaceable> <= p <= <replaceable>B2</replaceable>
are processed in step 2. If <replaceable>B2</replaceable> <
<replaceable>B1</replaceable>, no step 2 is performed.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><emphasis remap='B'><replaceable>B2min</replaceable>-<replaceable>B2max</replaceable></emphasis></term>
<listitem>
<para>alternatively one may use the
<replaceable>B2min</replaceable>-<replaceable>B2max</replaceable>
form, which means that all primes
<replaceable>B2min</replaceable> <= p <= <replaceable>B2max</replaceable>
should be processed. Thus specifying <replaceable>B2</replaceable> only corresponds to
<replaceable>B1</replaceable>-<replaceable>B2</replaceable>. The values of
<replaceable>B2min</replaceable> and <replaceable>B2max</replaceable> may be
arbitrarily large, but their difference must not exceed approximately 9e23,
subject to the number of blocks <replaceable>k</replaceable>.</para>
</listitem>
</varlistentry>
</variablelist>
</refsect1>
<refsect1 id='factoring_method'><title>FACTORING METHOD</title>
<variablelist remap='TP'>
<varlistentry>
<term><option>-pm1</option></term>
<listitem>
<para>Perform P-1 instead of the default method (ECM).</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-pp1</option></term>
<listitem>
<para>Perform P+1 instead of the default method (ECM).</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-t <replaceable>n</replaceable></option></term>
<listitem>
<para>Perform trial division up to <replaceable>n</replaceable>,
before P-1, P+1 or ECM. In loop mode (see option <option>-c</option>),
trial division is only performed in the first run.
</para>
</listitem>
</varlistentry>
</variablelist>
</refsect1>
<refsect1 id='group_and_initial_point_parameters'><title>GROUP AND INITIAL POINT PARAMETERS</title>
<variablelist remap='TP'>
<varlistentry>
<term><option>-x0 <replaceable>x</replaceable></option></term>
<listitem>
<para>[ECM, P-1, P+1] Use <replaceable>x</replaceable>
(arbitrary-precision integer or rational)
as initial point. For example, <option>-x0 1/3</option> is
valid. If not given, <replaceable>x</replaceable> is generated from the sigma
value for ECM, or at random for P-1 and P+1.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-sigma <replaceable>s</replaceable></option></term>
<listitem>
<para>[ECM] Use <replaceable>s</replaceable> (arbitrary-precision integer) as
curve generator. If omitted, <replaceable>s</replaceable> is generated at
random.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-A <replaceable>a</replaceable></option></term>
<listitem>
<para>[ECM] Use <replaceable>a</replaceable> (arbitrary-precision integer) as
curve parameter. If omitted, is it generated from the sigma value.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-go <replaceable>val</replaceable></option></term>
<listitem>
<para>[ECM, P-1, P+1] Multiply the initial point by
<replaceable>val</replaceable>, which can any valid expression,
possibly containing the special character N as place holder for the current
input number. Example:
<programlisting>ecm -pp1 -go "N^2-1" 1e6 < composite2000</programlisting>
</para>
</listitem>
</varlistentry>
</variablelist>
</refsect1>
<refsect1 id='step_2_parameters'><title>STEP 2 PARAMETERS</title>
<variablelist remap='TP'>
<varlistentry>
<term><option>-k <replaceable>k</replaceable></option></term>
<listitem>
<para>[ECM, P-1, P+1] Perform <replaceable>k</replaceable> blocks in step 2.
For a given <replaceable>B2</replaceable> value, increasing
<replaceable>k</replaceable> decreases the memory usage of step 2, at the
expense of more cpu time.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-treefile <replaceable>file</replaceable></option></term>
<listitem>
<para>Stores some tables of data in disk files to reduce the amount of
memory occupied in step 2, at the expense of disk I/O. Data will be written to
files <replaceable>file</replaceable>.1, <replaceable>file</replaceable>.2 etc.
Does not work with fast stage 2 for P+1 and P-1.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-power <replaceable>n</replaceable></option></term>
<listitem>
<para>[ECM, P-1]
Use x^<replaceable>n</replaceable> for Brent-Suyama's extension
(<option>-power 1</option> disables Brent-Suyama's extension).
The default polynomial is chosen depending on the method and B2.
For P-1 and P+1, disables the fast stage 2.
For P-1, <replaceable>n</replaceable> must be even.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-dickson <replaceable>n</replaceable></option></term>
<listitem>
<para>[ECM, P-1]
Use degree-<replaceable>n</replaceable> Dickson's polynomial for Brent-Suyama's extension.
For P-1 and P+1, disables the fast stage 2.
Like for <option>-power</option>, <replaceable>n</replaceable> must be
even for P-1.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-maxmem <replaceable>n</replaceable></option></term>
<listitem>
<para>Use at most <replaceable>n</replaceable> megabytes of memory in
stage 2.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-ntt</option></term>
<term><option>-no-ntt</option></term>
<listitem>
<para>Enable or disable the Number-Theoretic Transform code for polynomial
arithmetic in stage 2. With NTT, dF is chosen to be a power of 2, and is
limited by the number suitable primes that fit in a machine word (which is
a limitation only on 32 bit systems). The -no-ntt variant uses more memory,
but is faster than NTT with large input numbers. By default, NTT is used
for P-1, P+1 and for ECM on numbers of size at most 30 machine words.
</para>
</listitem>
</varlistentry>
</variablelist>
</refsect1>
<refsect1 id='output'><title>OUTPUT</title>
<variablelist remap='TP'>
<varlistentry>
<term><option>-q</option></term>
<listitem>
<para>Quiet mode. Found factorizations are printed on standard output,
with factors separated by white spaces, one line per input number
(if no factor was found, the input number is simply copied).
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-v</option></term>
<listitem>
<para>Verbose mode. More information is printed, more <option>-v</option>
options increase verbosity. With one <option>-v</option>, the kind of modular
multiplication used, initial x0 value, step 2 parameters and progress, and
expected curves and time to find factors of different sizes for ECM are
printed. With <option>-v -v</option>, the A value for ECM
and residues at the end of step 1 and step 2 are printed. More
<option>-v</option> print internal data for debugging.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-timestamp</option></term>
<listitem>
<para>Print a time stamp whenever a new ECM curve or P+1 or P-1 run is
processed.</para>
</listitem>
</varlistentry>
</variablelist>
</refsect1>
<refsect1 id='modular_arithmetic_options'><title>MODULAR ARITHMETIC OPTIONS</title>
<para>Several algorithms are available for modular multiplication.
The program tries to find the best one for each input;
one can force a given method with the following options.</para>
<variablelist remap='TP'>
<varlistentry>
<term><option>-mpzmod</option></term>
<listitem>
<para>Use GMP's mpz_mod function (sub-quadratic for large inputs, but induces
some overhead for small ones).</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-modmuln</option></term>
<listitem>
<para>Use Montgomery's multiplication (quadratic version). Usually
best method for small input.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-redc</option></term>
<listitem>
<para>Use Montgomery's multiplication (sub-quadratic version).
Theoretically optimal for large input.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-nobase2</option></term>
<listitem>
<para>Disable special base-2 code (which is used when the input number is a
large factor of 2^n+1 or 2^n-1, see <option>-v</option>).</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-base2</option> <replaceable>n</replaceable></term>
<listitem>
<para>Force use of special base-2 code, input number must divide
2^<replaceable>n</replaceable>+1 if <replaceable>n</replaceable> > 0,
or 2^|<replaceable>n</replaceable>|-1 if <replaceable>n</replaceable> < 0.
</para>
</listitem>
</varlistentry>
</variablelist>
</refsect1>
<refsect1 id='file_io'><title>FILE I/O</title>
<para>The following options enable one to perform step 1 and step 2 separately,
either on different machines, at different times, or using different
software (in particular, George Woltman's Prime95/mprime program can produce
step 1 output suitable for resuming with GMP-ECM).
It can also be useful to split step 2 into several runs,
using the <replaceable>B2min-B2max</replaceable> option.</para>
<variablelist remap='TP'>
<varlistentry>
<term><option>-inp <replaceable>file</replaceable></option></term>
<listitem>
<para>Take input from file <replaceable>file</replaceable> instead of from
standard input.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-save <replaceable>file</replaceable></option></term>
<listitem>
<para>Save result of step 1 in <replaceable>file</replaceable>. If
<replaceable>file</replaceable> exists, an error is raised.
Example: to perform only step 1 with <replaceable>B1</replaceable>=1000000
on the composite number in the file "c155" and save its result in file
"foo", use
<programlisting>ecm -save foo 1e6 1 < c155</programlisting>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-savea <replaceable>file</replaceable></option></term>
<listitem>
<para>Like <option>-save</option>, but appends to existing files.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-resume <replaceable>file</replaceable></option></term>
<listitem>
<para>Resume residues from <replaceable>file</replaceable>, reads from
standard input if <replaceable>file</replaceable> is "-".
Example: to perform step 2 following the above step 1 computation, use
<programlisting>ecm -resume foo 1e6</programlisting>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-chkpoint <replaceable>file</replaceable></option></term>
<listitem>
<para>Periodically write the current residue in stage 1 to
<replaceable>file</replaceable>. In case of a power failure, etc., the
computation can be continued with the <option>-resume</option> option.
<programlisting>ecm -chkpnt foo -pm1 1e10 < largenumber.txt
</programlisting>
</para>
</listitem>
</varlistentry>
</variablelist>
</refsect1>
<refsect1 id='loop_mode'><title>LOOP MODE</title>
<para>The <quote>loop mode</quote> (option <option>-c
<replaceable>n</replaceable></option>) enables one to run several curves
on each input number. The following options control its behavior.
</para>
<variablelist remap='TP'>
<varlistentry>
<term><option>-c <replaceable>n</replaceable></option></term>
<listitem>
<para>Perform <replaceable>n</replaceable> runs on each input number
(default is one).
This option is mainly useful for P+1 (for example with
<replaceable>n</replaceable>=3) or for ECM, where
<replaceable>n</replaceable> could be set to the expected number of
curves to find a d-digit factor with a given step 1 bound.
This option is incompatible with <option>-resume, -sigma,
-x0</option>. Giving <option>-c 0</option> produces an infinite loop until a
factor is found.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-one</option></term>
<listitem>
<para>In loop mode, stop when a factor is found; the default is to continue
until the cofactor is prime or the specified number of runs are done.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-b</option></term>
<listitem>
<para>Breadth-first processing: in loop mode, run one curve for each input
number, then a second curve for each one, and so on.
This is the default mode with <option>-inp</option>.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-d</option></term>
<listitem>
<para>Depth-first processing: in loop mode, run <replaceable>n</replaceable>
curves for the first number, then <replaceable>n</replaceable> curves for the
second one and so on.
This is the default mode with standard input.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-ve <replaceable>n</replaceable></option></term>
<listitem>
<para>In loop mode, in the second and following runs,
output only expressions that have at most <replaceable>n</replaceable>
characters. Default is <option>-ve 0</option>.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-i <replaceable>n</replaceable></option></term>
<listitem>
<para>In loop mode, increment <replaceable>B1</replaceable>
by <replaceable>n</replaceable> after each curve.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-I <replaceable>n</replaceable></option></term>
<listitem>
<para>In loop mode, multiply <replaceable>B1</replaceable>
by a factor depending on <replaceable>n</replaceable> after each curve.
Default is one which should be optimal on one machine, while
<option>-I 10</option> could be used when trying to factor the same number
simultaneously on 10 identical machines.
</para>
</listitem>
</varlistentry>
</variablelist>
</refsect1>
<refsect1 id='shellcmd'><title>SHELL COMMAND EXECUTION</title>
<para>These optins allow for executing shell commands to supplement
functionality to GMP-ECM.</para>
<variablelist remap='TP'>
<varlistentry>
<term><option>-prpcmd <replaceable>cmd</replaceable></option></term>
<listitem>
<para>
Execute command <replaceable>cmd</replaceable> to test primality
if factors and cofactors instead of GMP-ECM's own functions. The
number to test is passed via stdin. An exit code of 0 is interpreted
as <quote>probably prime</quote>, a non-zero exit code as
<quote>composite</quote>.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-faccmd <replaceable>cmd</replaceable></option></term>
<listitem>
<para>
Executes command <replaceable>cmd</replaceable> whenever a factor
is found by P-1, P+1 or ECM. The input number, factor and cofactor
are passed via stdin, each on a line. This could be used i.e. to
mail new factors automatically:
<programlisting>ecm -faccmd 'mail -s <quote>$HOSTNAME found a factor</quote>
me@myaddress.com' 11e6 < cunningham.in
</programlisting>
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-idlecmd <replaceable>cmd</replaceable></option></term>
<listitem>
<para>
Executes command <replaceable>cmd</replaceable> before each ECM curve,
P-1 or P+1 attempt on a number is started. If the exit status of
<replaceable>cmd</replaceable> is non-zero, GMP-ECM terminates
immediately, otherwise it continues normally. GMP-ECM is stopped while
<replaceable>cmd</replaceable> runs, offering a way for letting GMP-ECM
sleep for example while the system is otherwise busy.
</para>
</listitem>
</varlistentry>
</variablelist>
</refsect1>
<refsect1 id='miscellaneous'><title>MISCELLANEOUS</title>
<variablelist remap='TP'>
<varlistentry>
<term><option>-n</option></term>
<listitem>
<para>Run the program in <quote>nice</quote> mode (below normal priority).
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-nn</option></term>
<listitem>
<para>Run the program in <quote>very nice</quote> mode (idle priority).</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-B2scale <replaceable>f</replaceable></option></term>
<listitem>
<para>Multiply the default step 2 bound <replaceable>B2</replaceable>
by the floating-point value <replaceable>f</replaceable>.
Example: <option>-B2scale 0.5</option>
divides the default <replaceable>B2</replaceable> by 2.</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-stage1time <replaceable>n</replaceable></option></term>
<listitem>
<para>Add <replaceable>n</replaceable> seconds to stage 1 time.
This is useful to get correct expected time with
<replaceable>-v</replaceable> if part of stage 1 was done in another run.
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-cofdec</option></term>
<listitem>
<para>Force cofactor output in decimal (even if expressions are used).
</para>
</listitem>
</varlistentry>
<varlistentry>
<term><option>-h</option>, <option>--help</option></term>
<listitem>
<para>Display a short description of ecm usage, parameters and command line
options.</para>
</listitem>
</varlistentry>
</variablelist>
<!-- TeX users may be more comfortable with the \fB<whatever>\fP and -->
<!-- \fI<whatever>\fP escape sequences to invode bold face and italics, -->
<!-- respectively. -->
</refsect1>
<refsect1 id='syntax'><title>INPUT SYNTAX</title>
<para>The input numbers can have several forms:</para>
<para>Raw decimal numbers like 123456789.</para>
<para>Comments can be placed in the file: everything after <quote>//</quote>
is ignored, up to the end of line.</para>
<para>Line continuation. If a line ends with a backslash character
<quote>\</quote>, it is considered to continue on the next line.</para>
<para>Common arithmetic expressions can be used. Example:
<replaceable>3*5+2^10</replaceable>.</para>
<para>Factorial: example <replaceable>53!</replaceable>.</para>
<para>Multi-factorial: example <replaceable>15!3</replaceable>
means 15*12*9*6*3.</para>
<para>Primorial: example <replaceable>11#</replaceable> means
2*3*5*7*11.</para>
<para>Reduced primorial: example <replaceable>17#5</replaceable> means
5*7*11*13*17.</para>
<para>Functions: currently, the only available function is
<replaceable>Phi(x,n)</replaceable>.</para>
</refsect1>
<refsect1 id='exitstatus'><title>EXIT STATUS</title>
<para>
The exit status reflects the result of the last ECM curve or P-1/P+1 attempt
the program performed. Individual bits signify particular events,
specifically:
</para>
<variablelist remap='TP'>
<varlistentry>
<term>Bit 0</term>
<listitem>
<simpara>0 if normal program termination, 1 if error occured</simpara>
</listitem>
</varlistentry>
<varlistentry>
<term>Bit 1</term>
<listitem>
<simpara>0 if no proper factor was found, 1 otherwise</simpara>
</listitem>
</varlistentry>
<varlistentry>
<term>Bit 2</term>
<listitem>
<simpara>0 if factor is composite, 1 if factor is a probable prime</simpara>
</listitem>
</varlistentry>
<varlistentry>
<term>Bit 3</term>
<listitem>
<simpara>0 if cofactor is composite, 1 if cofactor is a probable prime</simpara>
</listitem>
</varlistentry>
</variablelist>
<para>Thus, the following exit status values may occur:</para>
<variablelist>
<varlistentry>
<term>0</term>
<listitem>
<simpara>Normal program termination, no factor found</simpara>
</listitem>
</varlistentry>
<varlistentry>
<term>1</term>
<listitem>
<simpara>Error</simpara>
</listitem>
</varlistentry>
<varlistentry>
<term>2</term>
<listitem>
<simpara>Composite factor found, cofactor is composite</simpara>
</listitem>
</varlistentry>
<varlistentry>
<term>6</term>
<listitem>
<simpara>Probable prime factor found, cofactor is composite</simpara>
</listitem>
</varlistentry>
<varlistentry>
<term>8</term>
<listitem>
<simpara>Input number found</simpara>
</listitem>
</varlistentry>
<varlistentry>
<term>10</term>
<listitem>
<simpara>Composite factor found, cofactor is a probable prime</simpara>
</listitem>
</varlistentry>
<varlistentry>
<term>14</term>
<listitem>
<simpara>Probable prime factor found, cofactor is a probable prime</simpara>
</listitem>
</varlistentry>
</variablelist>
</refsect1>
<refsect1 id='bugs'><title>BUGS</title>
<para>
Report bugs to <ecm-discuss@lists.gforge.inria.fr>, after checking
<http://www.loria.fr/~zimmerma/records/ecmnet.html> for bug fixes
or new versions.
</para>
</refsect1>
<refsect1 id='author'><title>AUTHORS</title>
<para>Pierrick Gaudry <gaudry at lix dot polytechnique dot fr>
contributed efficient assembly code for combined mul/redc;</para>
<para>Jim Fougeron <jfoug at cox dot net> contributed the expression
parser and several command-line options;</para>
<para>Laurent Fousse <laurent at komite dot net> contributed the middle
product code, the autoconf/automake tools, and is the maintainer of the
Debian package;</para>
<para>Alexander Kruppa <(lastname)al@loria.fr> contributed
estimates for probability of success for ECM,
the new P+1 and P-1 stage 2 (with P.-L. Montgomery),
new AMD64 asm mulredc code, and some other things;</para>
<para>Dave Newman <david.(lastname)@jesus.ox.ac.uk>
contributed the Kronecker-Schoenhage and NTT multiplication code;</para>
<para>Jason S. Papadopoulos contributed a speedup of the NTT code</para>
<para>Paul Zimmermann <zimmerma at loria dot fr> is the author of the
first version of the program and chief maintainer of GMP-ECM.</para>
<para>Note: email addresses have been obscured, the required substitutions
should be obvious.
</para>
</refsect1>
</refentry>
|