1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
|
#!/bin/sh
# test file for P+1 method
#
# Copyright 2002, 2003 Paul Zimmermann and Alexander Kruppa.
#
# This program is free software; you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the
# Free Software Foundation; either version 2 of the License, or (at your
# option) any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; see the file COPYING. If not, write to the Free
# Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
# MA 02110-1301, USA.
PP1="$1 -pp1"
# Call with "checkcode $? n" to check that return code is n
checkcode () {
if [ $1 != $2 ]
then
echo "############### ERROR ###############"
echo "Expected return code $2 but got $1"
exit 1
fi
}
checkcode2 () {
if [ $1 != $2 ]
then
if [ $1 != $3 ]
then
echo "############### ERROR ###############"
echo "Expected return code $2 or $3 but got $1"
exit 1
fi
fi
}
# P+1 requires that sigma^2-4 is a quadratic non-residue mod p
echo 328006342451 | $PP1 -x0 5 120 7043; checkcode $? 8
# check rational seed
echo 328006342451 | $PP1 -x0 1/5 120 7043; checkcode $? 8
# try primes < d in stage 2
echo 2050449218179969792522461197 | $PP1 -x0 6 -k 1 20 0-1e6; checkcode $? 14
echo 6215074747201 | $PP1 -x0 5 630 199729; checkcode $? 8
# bug in 6.1.3
echo 6215074747201 | $PP1 -power 2 -x0 5 630 199729; checkcode $? 8
echo 6215074747201 | $PP1 -dickson 3 -x0 5 630 199729; checkcode $? 8
echo 8857714771093 | $PP1 -x0 3 23251 49207; checkcode $? 8
echo 236344687097 | $PP1 -x0 3 619 55001; checkcode $? 8
echo 87251820842149 | $PP1 -x0 5 3691 170249; checkcode $? 8
echo 719571227339189 | $PP1 -x0 4 41039 57679; checkcode $? 8
echo 5468575720021 | $PP1 -x0 6 1439 175759; checkcode $? 8
echo 49804972211 | $PP1 -x0 5 15443 268757; checkcode $? 8
echo 329573417220613 | $PP1 -x0 3 5279 101573; checkcode $? 8
echo 4866979762781 | $PP1 -x0 4 7309 97609; checkcode $? 8
echo 187333846633 | $PP1 -x0 3 2063 9851; checkcode $? 8
echo 332526664667473 | $PP1 -x0 3 65993 111919; checkcode $? 8
echo 265043186297 | $PP1 -x0 3 8761 152791; checkcode $? 8
echo 207734163253 | $PP1 -x0 3 1877 4211; checkcode $? 8
echo 225974065503889 | $PP1 -x0 5 -k 5 7867 8243; checkcode $? 8
echo 660198074631409 | $PP1 -x0 5 22541 115679; checkcode $? 8
echo 563215815517 | $PP1 -x0 3 3469 109849; checkcode $? 8
# test B2min-B2
echo 563215815517 | $PP1 -x0 3 3469 109849-109849; checkcode $? 8
echo 409100738617 | $PP1 -x0 3 19 19; checkcode $? 8
# p37 from 45^123+1 found by Peter Montgomery with B1=30M
echo 2277189375098448170118558775447117254551111605543304035536750762506158547102293199086726265869065639109 | $PP1 -x0 3 2337233 132554351
checkcode $? 14
# bug in ecm-5.0 (overflow in fin_diff_coeff)
echo 630503947831861669 | $PP1 -x0 5 7 9007199254740000-9007199254741000; checkcode $? 8
# bug in ecm-6.0.1 on 64-bit machines. The error message "Error, maximal
# step1 bound for P+1 is ..." on 32-bit machines is normal.
echo "NOTE: NEXT TEST WILL FAIL ON 32BIT MACHINES, THIS IS EXPECTED."
echo 8589934621 | $PP1 -x0 10 4294967310-4294967311 1; checkcode2 $? 1 8
# A test with a larger input number to test modular arithmetic routines not
# in mulredc*.asm. This input has 1363 bits so it has 22 64 bit words
# (43 32 bit words) and cannot use mulredc which handles only up to 20 limbs
echo "6054018161*10^400+417727253109" | $PP1 -x0 4 2e3 2e6; checkcode $? 14
# Bug reported by Andreas Schickel: on 32 bit systems, the code in lucas.c
# for generating Lucas chains is prone to causing integer overflows, giving
# incorrect chains for some primes. This test exhibits the bug on 32 bit
# systems but works on 64 bit
echo 154618728587 | $PP1 -x0 3 -go 36 4294957296-4294967295 1; checkcode $? 8
echo "All P+1 tests are ok."
echo ""
|