File: ecm_ntt.c

package info (click to toggle)
gmp-ecm 7.0.4+ds-5
  • links: PTS, VCS
  • area: main
  • in suites: bullseye, buster, sid
  • size: 4,728 kB
  • sloc: asm: 36,431; ansic: 34,057; xml: 885; python: 799; sh: 698; makefile: 348
file content (411 lines) | stat: -rw-r--r-- 12,066 bytes parent folder | download | duplicates (2)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
/* ecm_ntt.c - high level poly functions to interface between ecm and sp

Copyright 2005, 2006, 2007, 2008, 2009, 2011, 2012 Dave Newman,
Paul Zimmermann, Alexander Kruppa.

This file is part of the ECM Library.

The ECM Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.

The ECM Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU Lesser General Public
License for more details.

You should have received a copy of the GNU Lesser General Public License
along with the ECM Library; see the file COPYING.LIB.  If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "sp.h"
#include "ecm-impl.h"

#ifdef HAVE_UNISTD_H
#include <unistd.h> /* for unlink */
#endif

#define UNUSED 0

/* memory: 4 * len mpspv coeffs */
void
ntt_mul (mpzv_t r, mpzv_t x, mpzv_t y, spv_size_t len, mpzv_t t,
    int monic, mpzspm_t mpzspm)
{
  mpzspv_t u, v;
	
  if (len < MUL_NTT_THRESHOLD)
    {
      list_mul (r, x, len, y, len, monic, t);
      return;
    }

  u = mpzspv_init (2 * len, mpzspm);
  v = mpzspv_init (2 * len, mpzspm);
  
  mpzspv_from_mpzv (v, 0, y, len, mpzspm);
  mpzspv_from_mpzv (u, 0, x, len, mpzspm);

  mpzspv_mul_ntt(u, 0, u, 0, len, v, 0, len, 2 * len, monic, 
    monic ? 2 * len : 0, mpzspm, 
    NTT_MUL_STEP_FFT1 + NTT_MUL_STEP_FFT2 + NTT_MUL_STEP_MUL + NTT_MUL_STEP_IFFT);
  mpzspv_to_mpzv (u, 0, r, 2 * len - 1 + monic, mpzspm);
  
  mpzspv_clear (u, mpzspm);
  mpzspv_clear (v, mpzspm);
}

/* memory: 2 * len mpzspv coeffs */
void
ntt_PolyFromRoots (mpzv_t r, mpzv_t a, spv_size_t len, mpzv_t t,
    mpzspm_t mpzspm)
{
  mpzspv_t x;
  spv_size_t i, m;
  
  ASSERT (len == ((spv_size_t)1) << ceil_log2 (len));

  if (len <= MUL_NTT_THRESHOLD)
  {
    PolyFromRoots (r, a, len, t, mpzspm->modulus);
    return;
  }
  
  x = mpzspv_init (2 * len, mpzspm);
  
  for (i = 0; i < len; i += MUL_NTT_THRESHOLD)
    {
      PolyFromRoots (r, a + i, MUL_NTT_THRESHOLD, t, mpzspm->modulus);
      mpzspv_from_mpzv (x, 2 * i, r, MUL_NTT_THRESHOLD, mpzspm);
    }
  
  for (m = MUL_NTT_THRESHOLD; m < len; m *= 2)
    {
      for (i = 0; i < 2 * len; i += 4 * m)
        {
	  mpzspv_mul_ntt (x, i, x, i, m, x, i + 2 * m, m, 2 * m, 1, 2 * m, mpzspm,
            NTT_MUL_STEP_FFT1 + NTT_MUL_STEP_FFT2 + NTT_MUL_STEP_MUL + NTT_MUL_STEP_IFFT);
	  
	  if (2 * m < len)
	    mpzspv_normalise (x, i, 2 * m, mpzspm);
	}	  
    }
      
  mpzspv_to_mpzv (x, 0, r, len, mpzspm);

  mpzspv_clear (x, mpzspm);
}

  
/* memory: 2 * len mpzspv coeffs */
int
ntt_PolyFromRoots_Tree (mpzv_t r, mpzv_t a, spv_size_t len, mpzv_t t,
    int dolvl, mpzspm_t mpzspm, mpzv_t *Tree, FILE *TreeFile)
{
  mpzspv_t x;
  spv_size_t i, m, m_max;
  mpzv_t src;
  mpzv_t *dst = Tree + ceil_log2 (len) - 1;

  ASSERT (len == ((spv_size_t)1) << ceil_log2 (len));
  
  x = mpzspv_init (2 * len, mpzspm);
  
  if (dolvl >= 0)
    {
      src = a;
      dst = &r;
    }
  else  
    {
      /* Copy the roots into the destination level of the tree (negating
	 if so desired), set the source to this level (which now contains 
	 the possibly negated roots), and advance the destination level 
	 of the tree to the next level */
      src = *dst;
      /* we consider x + root[i], which means we consider negated roots */
      list_set (*dst--, a, len);
    }
  
  m = (dolvl == -1) ? 1 : 1 << (ceil_log2 (len) - 1 - dolvl);
  m_max = (dolvl == -1) ? len : 2 * m;
  
  for (; m < m_max && m < MUL_NTT_THRESHOLD; m *= 2)
    {
      /* dst = &r anyway for dolvl != -1 */
      if (m == len / 2)
	dst = &r;
      
      if (TreeFile && list_out_raw (TreeFile, src, len) == ECM_ERROR)
        {
          outputf (OUTPUT_ERROR, "Error writing product tree of F\n");
          return ECM_ERROR;
        }

      for (i = 0; i < len; i += 2 * m)
	list_mul (t + i, src + i, m, src + i + m, m, 1, t + len);

      list_mod (*dst, t, len, mpzspm->modulus);
      
      src = *dst--;
    }
  
  for (; m < m_max; m *= 2)
    {
      ASSERT (m > 1); /* This code does not do the sign change. Let's assume
			 MUL_NTT_THRESHOLD is always large enough that the
			 degree 1 product are done in the above loop */
      /* dst = &r anyway for dolvl != -1 */
      if (m == len / 2)
        dst = &r;
      
      for (i = 0; i < 2 * len; i += 4 * m)
        {
 	  if (TreeFile &&
	      list_out_raw (TreeFile, src + i / 2, 2 * m) == ECM_ERROR)
	    return ECM_ERROR;
	  
	  mpzspv_from_mpzv (x, i, src + i / 2, m, mpzspm);
	  mpzspv_from_mpzv (x, i + 2 * m, src + i / 2 + m, m, mpzspm);
          mpzspv_mul_ntt (x, i, x, i, m, x, i + 2 * m, m, 2 * m, 1, 2 * m, mpzspm,
            NTT_MUL_STEP_FFT1 + NTT_MUL_STEP_FFT2 + NTT_MUL_STEP_MUL + NTT_MUL_STEP_IFFT);
          mpzspv_to_mpzv (x, i, *dst + i / 2, 2 * m, mpzspm);

          /* we only do the mod reduction to reduce the file size a bit */
	  if (TreeFile)
	    list_mod (*dst + i / 2, *dst + i / 2, 2 * m, mpzspm->modulus);
	}
    
      src = *dst--;
    }

  mpzspv_clear (x, mpzspm);

  return 0;
}


/* 2 NTTs of size 2 * len
 * 2 NTTs of size len
 *
 * memory: 2 * len mpzspv coeffs */
void
ntt_PrerevertDivision (mpzv_t a, mpzv_t b, mpzv_t invb, mpzspv_t sp_b,
    mpzspv_t sp_invb, spv_size_t len, mpzv_t t, mpzspm_t mpzspm)
{
  mpzspv_t x;
  
  if (len < PREREVERTDIVISION_NTT_THRESHOLD)
    {
      PrerevertDivision (a, b, invb, len, t, mpzspm->modulus);
      return;
    }
  
  x = mpzspv_init (2 * len, mpzspm);

  /* y = TOP (TOP (a) * invb) */
  mpzspv_set_sp (x, 0, 0, len + 1, mpzspm);
  mpzspv_from_mpzv (x, len + 1, a + len, len - 1, mpzspm);
  mpzspv_mul_ntt (x, 0, x, 0, 2 * len, sp_invb, 0, UNUSED, 2 * len, 0, 0, mpzspm,
    NTT_MUL_STEP_FFT1 + NTT_MUL_STEP_MUL + NTT_MUL_STEP_IFFT);
  mpzspv_normalise (x, 0, len, mpzspm);
  
  mpzspv_mul_ntt (x, 0, x, 0, len, sp_b, 0, UNUSED, len, 0, 0, mpzspm, 
    NTT_MUL_STEP_FFT1 + NTT_MUL_STEP_MUL + NTT_MUL_STEP_IFFT);
  mpzspv_to_mpzv (x, 0, t, len, mpzspm);
  
  mpzspv_clear (x, mpzspm);
 
  list_sub (t, t, a + len, len - 1);
  list_sub (a, a, t, len);
  /* can we avoid this mod without risking overflow later? */
  list_mod (a, a, len, mpzspm->modulus);
}

/* memory: 7/2 * len mpzspv coeffs */
void ntt_PolyInvert (mpzv_t q, mpzv_t b, spv_size_t len, mpzv_t t,
    mpzspm_t mpzspm)
{
  spv_size_t k = POLYINVERT_NTT_THRESHOLD / 2;
  mpzspv_t w, x, y, z;
  
  if (len < POLYINVERT_NTT_THRESHOLD)
    {
      PolyInvert (q, b, len, t, mpzspm->modulus);
      return;
    }

  PolyInvert (q + len - k, b + len - k, k, t, mpzspm->modulus);
  
  w = mpzspv_init (len / 2, mpzspm);
  x = mpzspv_init (len, mpzspm);
  y = mpzspv_init (len, mpzspm);
  z = mpzspv_init (len, mpzspm);
  
  mpzspv_from_mpzv (x, 0, q + len - k - 1, k + 1, mpzspm);
  mpzspv_from_mpzv (y, 0, b, len - 1, mpzspm);
  
  for (; k < len; k *= 2)
    {
      mpzspv_set (w, 0, x, 1, k, mpzspm);
      mpzspv_set (z, 0, y, len - 2 * k, 2 * k - 1, mpzspm);
      mpzspv_mul_ntt (z, 0, z, 0, 2 * k - 1, x, 0, k + 1, 2 * k, 0, 0, mpzspm, 
        NTT_MUL_STEP_FFT1 + NTT_MUL_STEP_FFT2 + NTT_MUL_STEP_MUL + NTT_MUL_STEP_IFFT);
      mpzspv_normalise (z, k, k, mpzspm);
      mpzspv_neg (z, 0, z, k, k, mpzspm);
      
      mpzspv_mul_ntt (x, 0, x, 0, 0, z, 0, k, 2 * k, 0, 0, mpzspm, 
        NTT_MUL_STEP_FFT2 + NTT_MUL_STEP_MUL + NTT_MUL_STEP_IFFT);
      if (2 * k < len)
	mpzspv_normalise (x, k, k, mpzspm);
      mpzspv_set (x, 1, x, k, k, mpzspm); /* legal overlap */
      mpzspv_set (x, k + 1, w, 0, MIN(k, len / 2 - 1), mpzspm);
    }

  mpzspv_to_mpzv (x, 1, q, len - POLYINVERT_NTT_THRESHOLD / 2, mpzspm);
 
#if defined DEBUG
  ntt_mul (t, q, b, len, NULL, 0, mpzspm);
  list_mod (t, t, 2 * len - 1, mpzspm->modulus);
  
  spv_size_t i;
  for (i = len - 1; i < 2 * len - 2; i++)
    if (mpz_cmp_ui (t[i], 0))
      printf ("error in ntt_PolyInvert\n");
  if (mpz_cmp_ui (t[2 * len - 2], 1))
    printf ("error in ntt_PolyInvert-\n");
#endif

  mpzspv_clear (w, mpzspm);
  mpzspv_clear (x, mpzspm);
  mpzspv_clear (y, mpzspm);
  mpzspv_clear (z, mpzspm);
}


/* memory: 4 * len mpzspv coeffs */
int
ntt_polyevalT (mpzv_t b, spv_size_t len, mpzv_t *Tree, mpzv_t T,
                   mpzspv_t sp_invF, mpzspm_t mpzspm, char *TreeFilenameStem)
{
  spv_size_t m, i;
  FILE *TreeFile = NULL;
  /* assume this "small" malloc will not fail in normal usage */
  char *TreeFilename = NULL;
  mpzv_t *Tree_orig = Tree;
  int level = 0; /* = ceil_log2 (len / m) - 1 */
  mpzspv_t x = mpzspv_init (2 * len, mpzspm);
  mpzspv_t y = mpzspv_init (2 * len, mpzspm);

  if (TreeFilenameStem)
    {
      TreeFilename = (char *) malloc (strlen (TreeFilenameStem) + 1 + 2 + 1);
      if (TreeFilename == NULL)
        {
          fprintf (stderr, "Cannot allocate memory in ntt_polyevalT\n");
          exit (1);
        }
    }
  
  mpzspv_from_mpzv (x, 0, b, len, mpzspm);
  mpzspv_mul_ntt(x, 0, x, 0, len, sp_invF, 0, UNUSED, 2 * len, 0, 0, mpzspm,
    NTT_MUL_STEP_FFT1 + NTT_MUL_STEP_MUL + NTT_MUL_STEP_IFFT);
  mpzspv_normalise (x, len - 1, len, mpzspm);
  mpzspv_set (y, 0, x, len - 1, len, mpzspm); /* y = high (b * invF) */
  mpzspv_reverse (y, 0, len, mpzspm); /* y = rev (high (b * invF)) */
    
  for (m = len / 2; m >= POLYEVALT_NTT_THRESHOLD; m /= 2)
    {
      if (TreeFilenameStem)
        {
          Tree = &T;
	  
          sprintf (TreeFilename, "%s.%d", TreeFilenameStem, level);
          
	  TreeFile = fopen (TreeFilename, "rb");
          if (TreeFile == NULL)
            {
              outputf (OUTPUT_ERROR,
		  "Error opening file %s for product tree of F\n",
                        TreeFilename);
              mpzspv_clear (x, mpzspm);
	      mpzspv_clear (y, mpzspm);
	      return ECM_ERROR;
            }

	  list_inp_raw (*Tree, TreeFile, len);

	  fclose (TreeFile);
	  unlink (TreeFilename);
	}

      for (i = 0; i < len; i += 2 * m)
        {
	  
	  list_revert (*Tree + i, m);
          mpzspv_set_sp (x, 0, 1, 1, mpzspm);
          mpzspv_from_mpzv (x, 1, *Tree + i, m, mpzspm);
	  /* x contains reversed monic poly */
          mpzspv_mul_ntt (x, 0, x, 0, m + 1, y, i, 2 * m, 2 * m, 0, 0, mpzspm, 
            NTT_MUL_STEP_FFT1 + NTT_MUL_STEP_FFT2 + NTT_MUL_STEP_MUL + NTT_MUL_STEP_IFFT);
          if (m > POLYEVALT_NTT_THRESHOLD)
	    mpzspv_normalise (x, m, m, mpzspm);
	    
	  list_revert (*Tree + i + m, m);
	  mpzspv_set_sp (x, 2 * m, 1, 1, mpzspm);
	  mpzspv_from_mpzv (x, 2 * m + 1, *Tree + i + m, m, mpzspm);
          mpzspv_mul_ntt(x, 2 * m, x, 2 * m, m + 1, y, i, UNUSED, 2 * m, 0, 0, mpzspm, 
            NTT_MUL_STEP_FFT1 + NTT_MUL_STEP_MUL + NTT_MUL_STEP_IFFT);
	  if (m > POLYEVALT_NTT_THRESHOLD)
	    mpzspv_normalise (x, 3 * m, m, mpzspm);
	  
	  mpzspv_set (y, i, x, 3 * m, m, mpzspm);
	  mpzspv_set (y, i + m, x, m, m, mpzspm);
        }
      
      Tree++;
      level++;
    }
    
  mpzspv_clear (x, mpzspm);
  mpzspv_to_mpzv (y, 0, T, len, mpzspm); /* T = rev (high (b * invF)) */
  mpzspv_clear (y, mpzspm);
  for (i = 0; i < len; i++)
    mpz_mod (T[i], T[i], mpzspm->modulus);

  for (; m >= 1; m /= 2)
    {
      if (TreeFilenameStem)
        {
          sprintf (TreeFilename, "%s.%d", TreeFilenameStem, level);

          TreeFile = fopen (TreeFilename, "rb");
          if (TreeFile == NULL)
            {
              outputf (OUTPUT_ERROR,
		  "Error opening file %s for product tree of F\n",
                        TreeFilename);
	      return ECM_ERROR;
            }
	}
      
      TUpTree (T, Tree_orig, len, T + len, level++, 0,
	  mpzspm->modulus, TreeFile);

      if (TreeFilenameStem)
        {
	  fclose (TreeFile);
	  unlink (TreeFilename);
	}
    }
  
  if (TreeFilenameStem)
    free (TreeFilename);
  list_swap (b, T, len);
  return 0;
}