1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
|
/* Dynamic Eratosthenes sieve.
Copyright 2001-2016 Paul Zimmermann and Alexander Kruppa.
Imported from CADO-NFS, which imported it from GMP-ECM.
(use 'unsigned long' instead of 'double'; thread-safe)
This file is part of the ECM Library.
The ECM Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 2.1 of the License, or (at your
option) any later version.
The ECM Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the ECM Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301, USA.
*/
/* compile with -DMAIN to use as a standalone program */
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "getprime_r.h"
/* provided for in cado.h, but we want getprime.c to be standalone */
#ifndef ASSERT
#define ASSERT(x)
#endif
/* This function returns successive odd primes, starting with 3.
To perform a loop over all primes <= B1, do the following
(compile this file with -DMAIN to count primes):
prime_info_t pi;
prime_info_init (pi);
for (p = 2; p <= B1; p = getprime_mt (pi))
{
...
}
prime_info_clear (pi);
*/
void
prime_info_init (prime_info_t i)
{
i->offset = 0;
i->current = -1;
i->primes = NULL;
i->nprimes = 0;
i->sieve = NULL;
i->len = 0;
i->moduli = NULL;
}
void
prime_info_clear (prime_info_t i)
{
free (i->primes);
free (i->sieve);
free (i->moduli);
}
/* this function is thread-safe */
ecm_uint
getprime_mt (prime_info_t i)
{
if (i->len)
{
unsigned char *ptr = i->sieve + i->current;
while (!*++ptr);
i->current = ptr - i->sieve;
}
else
i->current = 0;
if (i->current < i->len) /* most calls will end here */
return i->offset + 2 * i->current;
/* otherwise we have to sieve */
i->offset += 2 * i->len;
/* first enlarge sieving table if too small */
if ((ecm_uint) i->len * i->len < i->offset)
{
free (i->sieve);
i->len *= 2;
i->sieve = (unsigned char *) malloc ((i->len + 1 )
* sizeof (unsigned char));
/* assume this "small" malloc will not fail in normal usage */
ASSERT(i->sieve != NULL);
i->sieve[i->len] = 1; /* End mark */
}
/* now enlarge small prime table if too small */
if ((i->nprimes == 0) ||
((ecm_uint) i->primes[i->nprimes - 1] * (ecm_uint)
i->primes[i->nprimes - 1] < i->offset + i->len))
{
if (i->nprimes == 0) /* initialization */
{
i->nprimes = 1;
i->primes = (ecm_uint*) malloc (i->nprimes
* sizeof(ecm_uint));
/* assume this "small" malloc will not fail in normal usage */
ASSERT(i->primes != NULL);
i->moduli = (ecm_uint*) malloc (i->nprimes
* sizeof(ecm_uint));
/* assume this "small" malloc will not fail in normal usage */
ASSERT(i->moduli != NULL);
i->len = 1;
i->sieve = (unsigned char *) malloc((i->len + 1) *
sizeof(unsigned char)); /* len=1 here */
/* assume this "small" malloc will not fail in normal usage */
ASSERT(i->sieve != NULL);
i->sieve[i->len] = 1; /* End mark */
i->offset = 5;
i->sieve[0] = 1; /* corresponding to 5 */
i->primes[0] = 3;
i->moduli[0] = 1; /* next odd multiple of 3 is 7, i.e. next to 5 */
i->current = -1;
return 3;
}
else
{
ecm_uint k, p, j, ok;
k = i->nprimes;
i->nprimes *= 2;
i->primes = (ecm_uint*) realloc (i->primes, i->nprimes *
sizeof(ecm_uint));
i->moduli = (ecm_uint*) realloc (i->moduli, i->nprimes *
sizeof(ecm_uint));
/* assume those "small" realloc's will not fail in normal usage */
ASSERT(i->primes != NULL && i->moduli != NULL);
for (p = i->primes[k-1]; k < i->nprimes; k++)
{
/* find next (odd) prime > p */
do
{
for (p += 2, ok = 1, j = 0; (ok != 0) && (j < k); j++)
ok = p % i->primes[j];
}
while (ok == 0);
i->primes[k] = p;
/* moduli[k] is the smallest m such that
offset + 2*m = 0 mod p, i.e., moduli[k] = -offset/2 mod p */
j = i->offset % p;
j = (j == 0) ? j : p - j; /* -offset mod p */
if ((j % 2) != 0)
j += p; /* ensure j is even */
i->moduli[k] = j / 2;
}
}
}
/* now sieve for new primes */
{
ecm_int k;
ecm_uint j, p;
memset (i->sieve, 1, sizeof(unsigned char) * (i->len + 1));
for (j = 0; j < i->nprimes; j++)
{
p = i->primes[j];
for (k = i->moduli[j]; k < i->len; k += p)
i->sieve[k] = 0;
i->moduli[j] = k - i->len; /* for next sieving array */
}
}
{
unsigned char *ptr = i->sieve - 1;
while (!*++ptr);
i->current = ptr - i->sieve;
}
ASSERT(i->current < i->len); /* otherwise we found a prime gap >= sqrt(x)
around x */
return i->offset + 2 * i->current;
}
#ifdef MAIN
int
main (int argc, char *argv[])
{
unsigned long p, B;
unsigned long pi = 0;
prime_info_t i;
if (argc != 2)
{
fprintf (stderr, "Usage: getprime <bound>\n");
exit (EXIT_FAILURE);
}
B = strtoul (argv[1], NULL, 0);
prime_info_init (i);
for (pi = 0, p = 2; p <= B; p = getprime_mt (i), pi++);
printf ("pi(%lu)=%lu\n", B, pi);
prime_info_clear (i); /* free the tables */
return 0;
}
#endif
|