1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287
|
/* Implements algorithm polyeval and remainder tree using middle product.
Copyright 2003, 2004, 2005, 2006, 2007, 2008, 2009 Laurent Fousse,
Alexander Kruppa, Paul Zimmermann.
This file is part of the ECM Library.
The ECM Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The ECM Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the ECM Library; see the file COPYING.LIB. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#include <stdlib.h>
#include <string.h> /* for strlen */
#include "ecm-impl.h"
#ifdef HAVE_UNISTD_H
# include <unistd.h> /* for unlink */
#endif
#ifndef MAX
#define MAX(a,b) (((a) > (b)) ? (a) : (b))
#endif
/* #define DEBUG_TREEDATA */
extern unsigned int Fermat;
#if defined(DEBUG) || defined(DEBUG_TREEDATA)
void
print_vect (listz_t t, unsigned int l)
{
unsigned int i;
fprintf (ECM_STDOUT, "[");
for (i = 0; i < l; i++)
{
mpz_out_str (ECM_STDOUT, 10, t[i]);
if (i != l - 1)
fprintf (ECM_STDOUT, ", ");
else
fprintf (ECM_STDOUT, "]");
}
}
#endif
/* Computes TUpTree as described in ref[1]. k is the degree of the
* polynomial at the root of the tree. sh is the shift we need to
* apply to find the actual coefficients of the polynomial at the root
* of the tree.
*/
void
TUpTree (listz_t b, listz_t *Tree, unsigned int k, listz_t tmp, int dolvl,
unsigned int sh, mpz_t n, FILE *TreeFile)
{
unsigned int m, l;
m = k / 2;
l = k - m;
if (k == 1)
return;
#ifdef DEBUG
fprintf (ECM_STDOUT, "In TupTree, k = %d.\n", k);
fprintf (ECM_STDOUT, "b = ");
print_vect (b, k);
fprintf (ECM_STDOUT, "\nThe polynomials at that level are: ");
print_vect (Tree[0] + sh, k);
fprintf (ECM_STDOUT, "\n");
#endif
if (dolvl == 0 || dolvl == -1)
{
if (TreeFile != NULL)
{
list_inp_raw (tmp + k, TreeFile, l);
#ifdef DEBUG_TREEDATA
printf ("Read from file: ");
print_vect (tmp + k, l);
#endif
TMulGen (tmp + l, m - 1, tmp + k, l - 1, b, k - 1, tmp + k + l, n);
list_inp_raw (tmp + k, TreeFile, m);
#ifdef DEBUG_TREEDATA
print_vect (tmp + k, m);
printf ("\n");
#endif
TMulGen (tmp, l - 1, tmp + k, m - 1, b, k - 1, tmp + k + m, n);
}
else
{
#ifdef DEBUG_TREEDATA
printf ("Got from Tree: ");
print_vect (Tree[0] + sh, l);
print_vect (Tree[0] + sh + l, m);
printf ("\n");
#endif
TMulGen (tmp + l, m - 1, Tree[0] + sh, l - 1, b, k - 1, tmp + k, n);
TMulGen (tmp, l - 1, Tree[0] + sh + l, m - 1, b, k - 1, tmp + k, n);
}
#if defined(DEBUG) || defined (DEBUG_TREEDATA)
fprintf (ECM_STDOUT, "And the result at that level (before correction) is:");
print_vect (tmp, k);
fprintf (ECM_STDOUT, "\n");
#endif
/* GMP-ECM specific: leading coefficients in the product tree
* are implicit ones, so we need some extra work here.
*/
list_add (tmp, tmp, b + m, l);
list_add (tmp + l, tmp + l, b + l, m);
list_mod (b, tmp, k, n); /* reduce both parts simultaneously */
#ifdef DEBUG
fprintf (ECM_STDOUT, "And the result at this level is:");
print_vect (b, k);
fprintf (ECM_STDOUT, "\n");
#endif
}
if (dolvl > 0 || dolvl == -1)
{
if (dolvl > 0)
dolvl--;
TUpTree (b, Tree + 1, l, tmp, dolvl, sh, n, TreeFile);
TUpTree (b + l, Tree + 1, m, tmp, dolvl, sh + l, n, TreeFile);
}
}
static unsigned int
TUpTree_space (unsigned int k)
{
unsigned int m, l;
unsigned int r1, r2;
m = k / 2;
l = k - m;
if (k == 1)
return 0;
r1 = TMulGen_space (l - 1, m - 1, k - 1) + l;
if (m != l)
{
r2 = TMulGen_space (m - 1, l - 1, k - 1) + k;
r1 = MAX (r1, r2);
}
r2 = TUpTree_space (l);
r1 = MAX (r1, r2);
if (m != l)
{
r2 = TUpTree_space (m);
r1 = MAX (r1, r2);
}
return r1;
}
/* This is the documentation of the (now removed) polyeval() function.
Algorithm polyeval from section 3.7 of Peter Montgomery's dissertation.
Input:
G - an array of k elements of R, G[i], 0 <= i < k
representing the coefficients of a polynomial G(x) of degree < k
Tree - the product tree produced by PolyFromRoots
Tree[0][0..k-1] (degree k/2)
Tree[1][0..k-1] (degree k/4), ...,
Tree[lgk-1][0..k-1] (degree 1)
Output: the sequence of values of G(a[i]) are stored in G[i] for 0 <= i < k
Remark: we need an auxiliary (k+1)-th cell G[k] in G.
The memory used is M(k) = max(3*floor(k/2)+list_mul_mem(floor(k/2)),
k+list_mul_mem(ceil(k/2)),
floor(k/2) + M(ceil(k/2))).
Since list_mul_mem(k) >= 2*k, the maximum is the 1st.
*/
/* Same as polyeval. Needs invF as extra argument.
Return non-zero iff an error occurred.
*/
int
polyeval_tellegen (listz_t b, unsigned int k, listz_t *Tree, listz_t tmp,
unsigned int sizeT, listz_t invF, mpz_t n,
char *TreeFilename)
{
unsigned int tupspace;
unsigned int tkspace;
int allocated = 0,
r = 0; /* return value, 0 = no error */
listz_t T;
ASSERT(Tree != NULL || TreeFilename != NULL);
tupspace = TUpTree_space (k) + k;
tkspace = 2 * k - 1 + list_mul_mem (k);
tupspace = MAX (tupspace, tkspace);
if (TreeFilename != NULL)
tupspace += (k + 1) / 2;
if (sizeT >= tupspace)
T = tmp;
else
{
outputf (OUTPUT_DEVVERBOSE, "polyeval_tellegen: allocating extra temp"
" space, want %d but T has only %d\n", tupspace, sizeT);
T = init_list (tupspace);
if (T == NULL)
return ECM_ERROR;
allocated = 1;
}
#ifdef TELLEGEN_DEBUG
fprintf (ECM_STDOUT, "In polyeval_tellegen, k = %d.\n", k);
fprintf (ECM_STDOUT, "Required memory: %d.\n",
TMulGen_space (k - 1, k - 1, k - 1));
#endif
if (Fermat)
{
/* Schoenhage-Strassen can't do a half product faster than a full */
F_mul (T, invF, b, k, DEFAULT, Fermat, T + 2 * k);
list_mod (T, T + k - 1, k, n);
}
else
{
/* need space 2k-1+list_mul_mem(k) in T */
list_mul_high (T, invF, b, k);
list_mod (T, T + k - 1, k, n);
}
list_revert (T, k);
if (TreeFilename != NULL)
{
unsigned int lgk, i;
FILE *TreeFile;
char *fullname = (char *) malloc (strlen (TreeFilename) + 1 + 2 + 1);
ASSERT_ALWAYS(fullname != NULL);
lgk = ceil_log2 (k);
for (i = 0; i < lgk; i++)
{
sprintf (fullname, "%s.%d", TreeFilename, i);
TreeFile = fopen (fullname, "rb");
if (TreeFile == NULL)
{
outputf (OUTPUT_ERROR,
"Error opening file %s for product tree of F\n",
fullname);
r = ECM_ERROR;
goto clear_T;
}
TUpTree (T, NULL, k, T + k, i, 0, n, TreeFile);
fclose (TreeFile);
unlink (fullname);
}
free (fullname);
}
else
TUpTree (T, Tree, k, T + k, -1, 0, n, NULL);
list_swap (b, T, k); /* more efficient than list_set, since T is not
needed anymore */
clear_T:
if (allocated)
clear_list (T, tupspace);
return r;
}
|