1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001
|
/* Dickman's rho function (to compute probability of success of ecm).
Copyright 2004, 2005, 2006, 2008, 2009, 2010, 2011, 2012, 2013
Alexander Kruppa, Paul Zimmermann.
This file is part of the ECM Library.
The ECM Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The ECM Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the ECM Library; see the file COPYING.LIB. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
/* define TESTDRIVE to compile rho as a stand-alone program, in which case
you need to have libgsl installed */
#include "config.h"
#if defined(TESTDRIVE)
#define _ISOC99_SOURCE 1
#endif
#if defined(DEBUG_NUMINTEGRATE) || defined(TESTDRIVE)
# include <stdio.h>
#endif
#include <stdlib.h>
#include <math.h>
#if defined(TESTDRIVE)
#include <string.h>
#include <primesieve.h>
#endif
#if defined(TESTDRIVE)
#include <gsl/gsl_math.h>
#include <gsl/gsl_sf_expint.h>
#include <gsl/gsl_integration.h>
#endif
#include "ecm-impl.h"
/* For Suyama's curves, we have a known torsion factor of 12 = 2^2*3^1, and
an average extra exponent of 1/2 for 2, and 1/3 for 3 due to the probability
that the group order divided by 12 is divisible by 2 or 3, thus on average
we should have 2^2.5*3^1.333 ~ 24.5, however experimentally we have
2^3.323*3^1.687 ~ 63.9 (see Alexander Kruppa's thesis, Table 5.1 page 96,
row sigma=2, http://tel.archives-ouvertes.fr/tel-00477005/en/).
The exp(ECM_EXTRA_SMOOTHNESS) value takes into account the extra
smoothness with respect to a random number. */
#ifndef ECM_EXTRA_SMOOTHNESS
#define ECM_EXTRA_SMOOTHNESS 3.134
#endif
#define M_PI_SQR 9.869604401089358619 /* Pi^2 */
#define M_PI_SQR_6 1.644934066848226436 /* Pi^2/6 */
/* gsl_math.h defines M_EULER */
#ifndef M_EULER
#define M_EULER 0.577215664901532861
#endif
#define M_EULER_1 0.422784335098467139 /* 1 - Euler */
#ifndef MAX
#define MAX(x,y) ((x) > (y) ? (x) : (y))
#endif
#ifndef MIN
#define MIN(x,y) ((x) < (y) ? (x) : (y))
#endif
void rhoinit (int, int); /* used in stage2.c */
static double *rhotable = NULL;
static int invh = 0;
static double h = 0.;
static int tablemax = 0;
#if defined(TESTDRIVE)
#define PRIME_PI_MAX 10000
#define PRIME_PI_MAP(x) (((x)+1)/2)
/* The number of primes up to i. Use prime_pi[PRIME_PI_MAP(i)].
Only correct for i >= 2. */
static unsigned int prime_pi[PRIME_PI_MAP(PRIME_PI_MAX)+1];
#endif
/* Fixme: need prime generating funcion without static state variables */
const unsigned char primemap[667] = {
254, 223, 239, 126, 182, 219, 61, 249, 213, 79, 30, 243, 234, 166, 237, 158,
230, 12, 211, 211, 59, 221, 89, 165, 106, 103, 146, 189, 120, 30, 166, 86,
86, 227, 173, 45, 222, 42, 76, 85, 217, 163, 240, 159, 3, 84, 161, 248, 46,
253, 68, 233, 102, 246, 19, 58, 184, 76, 43, 58, 69, 17, 191, 84, 140, 193,
122, 179, 200, 188, 140, 79, 33, 88, 113, 113, 155, 193, 23, 239, 84, 150,
26, 8, 229, 131, 140, 70, 114, 251, 174, 101, 146, 143, 88, 135, 210, 146,
216, 129, 101, 38, 227, 160, 17, 56, 199, 38, 60, 129, 235, 153, 141, 81,
136, 62, 36, 243, 51, 77, 90, 139, 28, 167, 42, 180, 88, 76, 78, 38, 246,
25, 130, 220, 131, 195, 44, 241, 56, 2, 181, 205, 205, 2, 178, 74, 148, 12,
87, 76, 122, 48, 67, 11, 241, 203, 68, 108, 36, 248, 25, 1, 149, 168, 92,
115, 234, 141, 36, 150, 43, 80, 166, 34, 30, 196, 209, 72, 6, 212, 58, 47,
116, 156, 7, 106, 5, 136, 191, 104, 21, 46, 96, 85, 227, 183, 81, 152, 8,
20, 134, 90, 170, 69, 77, 73, 112, 39, 210, 147, 213, 202, 171, 2, 131, 97,
5, 36, 206, 135, 34, 194, 169, 173, 24, 140, 77, 120, 209, 137, 22, 176, 87,
199, 98, 162, 192, 52, 36, 82, 174, 90, 64, 50, 141, 33, 8, 67, 52, 182,
210, 182, 217, 25, 225, 96, 103, 26, 57, 96, 208, 68, 122, 148, 154, 9, 136,
131, 168, 116, 85, 16, 39, 161, 93, 104, 30, 35, 200, 50, 224, 25, 3, 68,
115, 72, 177, 56, 195, 230, 42, 87, 97, 152, 181, 28, 10, 104, 197, 129,
143, 172, 2, 41, 26, 71, 227, 148, 17, 78, 100, 46, 20, 203, 61, 220, 20,
197, 6, 16, 233, 41, 177, 130, 233, 48, 71, 227, 52, 25, 195, 37, 10, 48,
48, 180, 108, 193, 229, 70, 68, 216, 142, 76, 93, 34, 36, 112, 120, 146,
137, 129, 130, 86, 38, 27, 134, 233, 8, 165, 0, 211, 195, 41, 176, 194, 74,
16, 178, 89, 56, 161, 29, 66, 96, 199, 34, 39, 140, 200, 68, 26, 198, 139,
130, 129, 26, 70, 16, 166, 49, 9, 240, 84, 47, 24, 210, 216, 169, 21, 6, 46,
12, 246, 192, 14, 80, 145, 205, 38, 193, 24, 56, 101, 25, 195, 86, 147, 139,
42, 45, 214, 132, 74, 97, 10, 165, 44, 9, 224, 118, 196, 106, 60, 216, 8,
232, 20, 102, 27, 176, 164, 2, 99, 54, 16, 49, 7, 213, 146, 72, 66, 18, 195,
138, 160, 159, 45, 116, 164, 130, 133, 120, 92, 13, 24, 176, 97, 20, 29, 2,
232, 24, 18, 193, 1, 73, 28, 131, 48, 103, 51, 161, 136, 216, 15, 12, 244,
152, 136, 88, 215, 102, 66, 71, 177, 22, 168, 150, 8, 24, 65, 89, 21, 181,
68, 42, 82, 225, 179, 170, 161, 89, 69, 98, 85, 24, 17, 165, 12, 163, 60,
103, 0, 190, 84, 214, 10, 32, 54, 107, 130, 12, 21, 8, 126, 86, 145, 1, 120,
208, 97, 10, 132, 168, 44, 1, 87, 14, 86, 160, 80, 11, 152, 140, 71, 108,
32, 99, 16, 196, 9, 228, 12, 87, 136, 11, 117, 11, 194, 82, 130, 194, 57,
36, 2, 44, 86, 37, 122, 49, 41, 214, 163, 32, 225, 177, 24, 176, 12, 138,
50, 193, 17, 50, 9, 197, 173, 48, 55, 8, 188, 145, 130, 207, 32, 37, 107,
156, 48, 143, 68, 38, 70, 106, 7, 73, 142, 9, 88, 16, 2, 37, 197, 196, 66,
90, 128, 160, 128, 60, 144, 40, 100, 20, 225, 3, 132, 81, 12, 46, 163, 138,
164, 8, 192, 71, 126, 211, 43, 3, 205, 84, 42, 0, 4, 179, 146, 108, 66, 41,
76, 131, 193, 146, 204, 28};
#ifdef TESTDRIVE
unsigned long
gcd (unsigned long a, unsigned long b)
{
unsigned long t;
while (b != 0)
{
t = a % b;
a = b;
b = t;
}
return a;
}
unsigned long
eulerphi (unsigned long n)
{
unsigned long phi = 1, p;
for (p = 2; p * p <= n; p += 2)
{
if (n % p == 0)
{
phi *= p - 1;
n /= p;
while (n % p == 0)
{
phi *= p;
n /= p;
}
}
if (p == 2)
p--;
}
/* now n is prime */
return (n == 1) ? phi : phi * (n - 1);
}
/* The number of positive integers up to x that have no prime factor <= y,
for x >= y >= 2. Uses Buchstab's identity */
unsigned long
Buchstab_Phi(unsigned long x, unsigned long y)
{
unsigned long p, s;
primesieve_iterator pg[1];
if (x < 1)
return 0;
if (x <= y)
return 1;
#if 0
if (x < y^2)
return(1 + primepi(x) - primepi (y)));
#endif
s = 1;
primesieve_init (pg);
primesieve_skipto (pg, y, x+1);
for (p = primesieve_next_prime (pg); p <= x; p = primesieve_next_prime (pg))
s += Buchstab_Phi(x / p, p - 1);
return (s);
}
/* The number of positive integers up to x that have no prime factor
greter than y, for x >= y >= 2. Uses Buchstab's identity */
unsigned long
Buchstab_Psi(const unsigned long x, const unsigned long y)
{
unsigned long r, p;
primesieve_iterator pg[1];
if (x <= y)
return (x);
if (y == 1UL)
return (1);
/* If y^2 > x, then
Psi(x,y) = x - \sum_{y < p < x, p prime} floor(x/p)
We separate the sum into ranges where floor(x/p) = k,
which is x/(k+1) < p <= x/k.
We also need to satisfy y < p, so we need k < x/y - 1,
or k_max = ceil (x/y) - 2.
The primes y < p <= x/(k_max + 1) are summed separately. */
if (x <= PRIME_PI_MAX && x < y * y)
{
unsigned long kmax = x / y - 1;
unsigned long s1, s2, k;
s1 = (kmax + 1) * (prime_pi [PRIME_PI_MAP(x / (kmax + 1))] -
prime_pi [PRIME_PI_MAP(y)]);
s2 = 0;
for (k = 1; k <= kmax; k++)
s2 += prime_pi[PRIME_PI_MAP(x / k)];
s2 -= kmax * prime_pi [PRIME_PI_MAP(x / (kmax+1))];
return (x - s1 - s2);
}
r = 1;
primesieve_init (pg);
for (p = primesieve_next_prime (pg); p <= y; p = primesieve_next_prime (pg))
r += Buchstab_Psi (x / p, p);
return (r);
}
#endif /* TESTDRIVE */
#if defined(TESTDRIVE)
static double
Li (const double x)
{
return (- gsl_sf_expint_E1 (- log(x)));
}
#endif
/*
Evaluate dilogarithm via the sum
\Li_{2}(z)=\sum_{k=1}^{\infty} \frac{z^k}{k^2},
see http://mathworld.wolfram.com/Dilogarithm.html
Assumes |z| <= 0.5, for which the sum converges quickly.
*/
static double
dilog_series (const double z)
{
double r = 0.0, zk; /* zk = z^k */
int k, k2; /* k2 = k^2 */
/* Doubles have 53 bits in significand, with |z| <= 0.5 the k+1-st term
is <= 1/(2^k k^2) of the result, so 44 terms should do */
for (k = 1, k2 = 1, zk = z; k <= 44; k2 += 2 * k + 1, k++, zk *= z)
r += zk / (double) k2;
return r;
}
static double
dilog (double x)
{
ASSERT(x <= -1.0); /* dilog(1-x) is called from rhoexact for 2 < x <= 3 */
if (x <= -2.0)
return -dilog_series (1./x) - M_PI_SQR_6 - 0.5 * log(-1./x) * log(-1./x);
else /* x <= -1.0 */
{
/* L2(z) = -L2(1 - z) + 1/6 * Pi^2 - ln(1 - z)*ln(z)
L2(z) = -L2(1/z) - 1/6 * Pi^2 - 0.5*ln^2(-1/z)
->
L2(z) = -(-L2(1/(1-z)) - 1/6 * Pi^2 - 0.5*ln^2(-1/(1-z))) + 1/6 * Pi^2 - ln(1 - z)*ln(z)
= L2(1/(1-z)) - 1/6 * Pi^2 + 0.5*ln(1 - z)^2 - ln(1 - z)*ln(-z)
z in [-1, -2) -> 1/(1-z) in [1/2, 1/3)
*/
double log1x = log (1. - x);
return dilog_series (1. / (1. - x))
- M_PI_SQR_6 + log1x * (0.5 * log1x - log (-x));
}
}
#if 0
static double
L2 (double x)
{
return log (x) * (1 - log (x-1)) + M_PI_SQR_6 - dilog (1 - x);
}
#endif
static double
rhoexact (double x)
{
ASSERT(x <= 3.);
if (x <= 0.)
return 0.;
else if (x <= 1.)
return 1.;
else if (x <= 2.)
return 1. - log (x);
else /* 2 < x <= 3 thus -2 <= 1-x < -1 */
return 1. - log (x) * (1. - log (x - 1.)) + dilog (1. - x) + 0.5 * M_PI_SQR_6;
}
#if defined(TESTDRIVE)
/* The Buchstab omega(x) function, exact for x <= 4 where it can be
evaluated without numerical integration, and approximated by
exp(gamma) for larger x. */
static double
Buchstab_omega (const double x)
{
/* magic = dilog(-1) + 1 = Pi^2/12 + 1 */
const double magic = 1.82246703342411321824;
if (x < 1.) return (0.);
if (x <= 2.) return (1. / x);
if (x <= 3.) return ((log (x - 1.) + 1.) / x);
if (x <= 4.)
return ((dilog(2. - x) + (1. + log(x - 2.)) * log(x - 1.) + magic) / x);
/* If argument is out of range, return the limiting value for
$x->\infty$: e^-gamma.
For x only a little larger than 4., this has relative error 2.2e-6,
for larger x the error rapidly drops further */
return 0.56145948356688516982;
}
#endif
void
rhoinit (int parm_invh, int parm_tablemax)
{
int i;
if (parm_invh == invh && parm_tablemax == tablemax)
return;
if (rhotable != NULL)
{
free (rhotable);
rhotable = NULL;
invh = 0;
h = 0.;
tablemax = 0;
}
/* The integration below expects 3 * invh > 4 */
if (parm_tablemax == 0 || parm_invh < 2)
return;
invh = parm_invh;
h = 1. / (double) invh;
tablemax = parm_tablemax;
rhotable = (double *) malloc (parm_invh * parm_tablemax * sizeof (double));
ASSERT_ALWAYS(rhotable != NULL);
for (i = 0; i < (3 < parm_tablemax ? 3 : parm_tablemax) * invh; i++)
rhotable[i] = rhoexact (i * h);
for (i = 3 * invh; i < parm_tablemax * invh; i++)
{
/* rho(i*h) = 1 - \int_{1}^{i*h} rho(x-1)/x dx
= rho((i-4)*h) - \int_{(i-4)*h}^{i*h} rho(x-1)/x dx */
rhotable[i] = rhotable[i - 4] - 2. / 45. * (
7. * rhotable[i - invh - 4] / (double)(i - 4)
+ 32. * rhotable[i - invh - 3] / (double)(i - 3)
+ 12. * rhotable[i - invh - 2] / (double)(i - 2)
+ 32. * rhotable[i - invh - 1] / (double)(i - 1)
+ 7. * rhotable[i - invh] / (double)i );
if (rhotable[i] < 0.)
{
#ifndef DEBUG_NUMINTEGRATE
rhotable[i] = 0.;
#else
printf (stderr, "rhoinit: rhotable[%d] = %.16f\n", i,
rhotable[i]);
exit (EXIT_FAILURE);
#endif
}
}
}
/* assumes alpha < tablemax */
static double
dickmanrho (double alpha)
{
ASSERT(alpha < tablemax);
if (alpha <= 3.)
return rhoexact (alpha);
{
int a = floor (alpha * invh);
double rho1 = rhotable[a];
double rho2 = (a + 1) < tablemax * invh ? rhotable[a + 1] : 0;
return rho1 + (rho2 - rho1) * (alpha * invh - (double) a);
}
}
#if 0
static double
dickmanrhosigma (double alpha, double x)
{
if (alpha <= 0.)
return 0.;
if (alpha <= 1.)
return 1.;
if (alpha < tablemax)
return dickmanrho (alpha) + M_EULER_1 * dickmanrho (alpha - 1.) / log (x);
return 0.;
}
static double
dickmanrhosigma_i (int ai, double x)
{
if (ai <= 0)
return 0.;
if (ai <= invh)
return 1.;
if (ai < tablemax * invh)
return rhotable[ai] - M_EULER * rhotable[ai - invh] / log(x);
return 0.;
}
#endif
/* return the value of the "local" Dickman rho function, for numbers near x
(as opposed to numbers <= x for the original Dickman rho function).
Reference: PhD thesis of Alexander Kruppa,
http://docnum.univ-lorraine.fr/public/SCD_T_2010_0054_KRUPPA.pdf,
equation (5.6) page 100 */
static double
dickmanlocal (double alpha, double x)
{
if (alpha <= 1.)
return rhoexact (alpha);
if (alpha < tablemax)
return dickmanrho (alpha) - M_EULER * dickmanrho (alpha - 1.) / log (x);
return 0.;
}
static double
dickmanlocal_i (int ai, double x)
{
if (ai <= 0)
return 0.;
if (ai <= invh)
return 1.;
if (ai <= 2 * invh && ai < tablemax * invh)
return rhotable[ai] - M_EULER / log (x);
if (ai < tablemax * invh)
{
double logx = log (x);
return rhotable[ai] - (M_EULER * rhotable[ai - invh]
+ M_EULER_1 * rhotable[ai - 2 * invh] / logx) / logx;
}
return 0.;
}
static int
isprime(unsigned long n)
{
unsigned int r;
if (n % 2 == 0)
return (n == 2);
if (n % 3 == 0)
return (n == 3);
if (n % 5 == 0)
return (n == 5);
if (n / 30 >= sizeof (primemap))
abort();
r = n % 30; /* 8 possible values: 1,7,11,13,17,19,23,29 */
r = (r * 16 + r) / 64; /* maps the 8 values onto 0, ..., 7 */
return ((primemap[n / 30] & (1 << r)) != 0);
}
/* return the sum in Equation (5.10) page 102 of Alexander Kruppa's
PhD thesis */
static double
dickmanmu_sum (const unsigned long B1, const unsigned long B2,
const double x)
{
double s = 0.;
const double inv_logB1 = 1. / log(B1);
const double logx = log(x);
unsigned long p;
for (p = B1 + 1; p <= B2; p++)
if (isprime(p))
s += dickmanlocal ((logx - log(p)) * inv_logB1, x / p) / p;
return s;
}
/* return the probability that a number < x has its 2nd largest prime factor
less than x^(1/alpha) and its largest prime factor less than x^(beta/alpha)
*/
static double
dickmanmu (double alpha, double beta, double x)
{
double a, b, sum;
int ai, bi, i;
ai = ceil ((alpha - beta) * invh);
if (ai > tablemax * invh)
ai = tablemax * invh;
a = (double) ai * h;
bi = floor ((alpha - 1.) * invh);
if (bi > tablemax * invh)
bi = tablemax * invh;
b = (double) bi * h;
sum = 0.;
for (i = ai + 1; i < bi; i++)
sum += dickmanlocal_i (i, x) / (alpha - i * h);
sum += 0.5 * dickmanlocal_i (ai, x) / (alpha - a);
sum += 0.5 * dickmanlocal_i (bi, x) / (alpha - b);
sum *= h;
sum += (a - alpha + beta) * 0.5 * (dickmanlocal_i (ai, x) / (alpha - a) + dickmanlocal (alpha - beta, x) / beta);
sum += (alpha - 1. - b) * 0.5 * (dickmanlocal (alpha - 1., x) + dickmanlocal_i (bi, x) / (alpha - b));
return sum;
}
static double
brentsuyama (double B1, double B2, double N, double nr)
{
double a, alpha, beta, sum;
int ai, i;
alpha = log (N) / log (B1);
beta = log (B2) / log (B1);
ai = floor ((alpha - beta) * invh);
if (ai > tablemax * invh)
ai = tablemax * invh;
a = (double) ai * h;
sum = 0.;
for (i = 1; i < ai; i++)
sum += dickmanlocal_i (i, N) / (alpha - i * h) * (1 - exp (-nr * pow (B1, (-alpha + i * h))));
sum += 0.5 * (1 - exp(-nr / pow (B1, alpha)));
sum += 0.5 * dickmanlocal_i (ai, N) / (alpha - a) * (1 - exp(-nr * pow (B1, (-alpha + a))));
sum *= h;
sum += 0.5 * (alpha - beta - a) * (dickmanlocal_i (ai, N) / (alpha - a) + dickmanlocal (alpha - beta, N) / beta);
return sum;
}
static double
brsudickson (double B1, double B2, double N, double nr, int S)
{
int i, f;
double sum;
sum = 0;
f = eulerphi (S) / 2;
for (i = 1; i <= S / 2; i++)
if (gcd (i, S) == 1)
sum += brentsuyama (B1, B2, N, nr * (gcd (i - 1, S) + gcd (i + 1, S) - 4) / 2);
return sum / (double)f;
}
static double
brsupower (double B1, double B2, double N, double nr, int S)
{
int i, f;
double sum;
sum = 0;
f = eulerphi (S);
for (i = 1; i < S; i++)
if (gcd (i, S) == 1)
sum += brentsuyama (B1, B2, N, nr * (gcd (i - 1, S) - 2));
return sum / (double)f;
}
/* Assume N is as likely smooth as a number around N/exp(delta) */
static double
prob (double B1, double B2, double N, double nr, int S, double delta)
{
const double sumthresh = 20000.;
double alpha, beta, stage1, stage2, brsu;
const double effN = N / exp (delta);
ASSERT(rhotable != NULL);
/* What to do if rhotable is not initialised and asserting is not enabled?
For now, bail out with 0. result. Not really pretty, either */
if (rhotable == NULL)
return 0.;
if (B1 < 2. || N <= 1.)
return 0.;
if (effN <= B1)
return 1.;
#ifdef TESTDRIVE
printf ("B1 = %f, B2 = %f, N = %.0f, nr = %f, S = %d\n", B1, B2, N, nr, S);
#endif
alpha = log (effN) / log (B1);
stage1 = dickmanlocal (alpha, effN);
stage2 = 0.;
if (B2 > B1)
{
if (B1 < sumthresh)
{
stage2 += dickmanmu_sum (B1, MIN(B2, sumthresh), effN);
beta = log (B2) / log (MIN(B2, sumthresh));
}
else
beta = log (B2) / log (B1);
if (beta > 1.)
stage2 += dickmanmu (alpha, beta, effN);
}
brsu = 0.;
if (S < -1)
brsu = brsudickson (B1, B2, effN, nr, -S * 2);
if (S > 1)
brsu = brsupower (B1, B2, effN, nr, S * 2);
#ifdef TESTDRIVE
printf ("stage 1 : %f, stage 2 : %f, Brent-Suyama : %f\n", stage1, stage2, brsu);
#endif
return (stage1 + stage2 + brsu) > 0. ? (stage1 + stage2 + brsu) : 0.;
}
double
ecmprob (double B1, double B2, double N, double nr, int S)
{
return prob (B1, B2, N, nr, S, ECM_EXTRA_SMOOTHNESS);
}
/* see Willemien Ekkelkamp's Phd thesis:
https://openaccess.leidenuniv.nl/bitstream/handle/1887/14567/proefschrift_041109.pdf?sequence=2:
Bach-Peralta formula page 12
Corollary 4 page 18 with a 2nd-order term */
double
pm1prob (double B1, double B2, double N, double nr, int S, const mpz_t go)
{
mpz_t cof;
/* A prime power q^k divides p-1, p prime, with probability 1/(q^k-q^(k-1))
not with probability 1/q^k as for random numbers. This is taken into
account by the "smoothness" value here; a prime p-1 is about as likely
smooth as a random number around (p-1)/exp(smoothness).
smoothness = \sum_{q in Primes} log(q)/(q-1)^2 */
/* Note that this routine is also called for P+1, where we assume the same
behaviour as with P-1. However, if x0=6/5, Kruppa writes in his PhD
thesis that we get smoothness = 1.92012; with x0=2/7, we get
smoothness = 2.05093. */
double smoothness = 1.2269688;
unsigned long i;
if (go != NULL && mpz_cmp_ui (go, 1UL) > 0)
{
double res;
mpz_init (cof);
mpz_set (cof, go);
for (i = 2; i < 100; i++)
if (mpz_divisible_ui_p (cof, i))
{
/* If we know that q divides p-1 with probability 1, we need to
adjust the smoothness parameter */
smoothness -= log ((double) i) / (double) ((i-1)*(i-1));
/* printf ("pm1prob: Dividing out %lu\n", i); */
while (mpz_divisible_ui_p (cof, i))
mpz_tdiv_q_ui (cof, cof, i);
}
/* printf ("pm1prob: smoothness after dividing out go primes < 100: %f\n",
smoothness); */
res = prob (B1, B2, N, nr, S, smoothness + log(mpz_get_d (cof)));
mpz_clear (cof);
return res;
}
return prob (B1, B2, N, nr, S, smoothness);
}
#if defined(TESTDRIVE)
/* Compute probability for primes p == r (mod m) */
static double
pm1prob_rm (double B1, double B2, double N, double nr, int S, unsigned long r,
unsigned long m)
{
unsigned long cof;
double smoothness = 1.2269688;
unsigned long p;
cof = m;
for (p = 2UL; p < 100UL; p++)
if (cof % p == 0UL) /* For each prime in m */
{
unsigned long cof_r, k, i;
/* Divisibility by i is determined by r and m. We need to
adjust the smoothness parameter. In P-1, we had estimated the
expected value for the exponent of p as p/(p-1)^2. Undo that. */
smoothness -= (double)p / ((p-1)*(p-1)) * log ((double) p);
/* The expected value for the exponent of this prime is k s.t.
p^k || r, plus 1/(p-1) if p^k || m as well */
cof_r = gcd (r - 1UL, m);
for (k = 0UL; cof_r % p == 0UL; k++)
cof_r /= p;
smoothness += k * log ((double) p);
cof_r = m;
for (i = 0UL; cof_r % p == 0UL; i++)
cof_r /= p;
if (i == k)
smoothness += (1./(p - 1.) * log ((double) p));
while (cof % p == 0UL)
cof /= p;
printf ("pm1prob_rm: p = %lu, k = %lu, i = %lu, new smoothness = %f\n",
p, i, k, smoothness);
}
return prob (B1, B2, N, nr, S, smoothness);
}
/* The \Phi(x,y) function gives the number of natural numbers <= x
that have no prime factor <= y, see Tenenbaum,
"Introduction the analytical and probabilistic number theory", III.6.
This function estimates the \Phi(x,y) function via eq. (48) of the 1st
edition resp. equation (6.49) of the 3rd edition of Tenenbaum's book. */
static double
integrand1 (double x, double *y)
{
return pow (*y, x) / x * log(x-1.);
}
static double
integrand2 (double v, double *y)
{
return Buchstab_omega (v) * pow (*y, v);
}
/* Return approximate number of integers n with x1 < n <= x2
that have no prime factor <= y */
double
no_small_prime (double x1, double x2, double y)
{
double u1, u2;
ASSERT (x1 >= 2.);
ASSERT (x2 >= x1);
ASSERT (y >= 2.);
if (x1 == x2 || x2 <= y)
return 0.;
if (x1 < y)
x1 = y;
u1 = log(x1)/log(y);
u2 = log(x2)/log(y);
/* If no prime factors <= sqrt(x2), numbers must be a primes > y */
if (x2 <= y*y)
return (Li(x2) - Li(x1));
if (u2 <= 3)
{
double r, abserr;
size_t neval;
gsl_function f;
f.function = (double (*) (double, void *)) &integrand1;
f.params = &y;
/* intnum(v=1,u,buchstab(v)*y^v) */
/* First part: intnum(v=u1, u, y^v/v*log(v-1.)) */
gsl_integration_qng (&f, MAX(u1, 2.) , u2, 0., 0.001, &r, &abserr, &neval);
/* Second part: intnum(v=u1, u2, y^v/v) = Li(x2) - Li(x1) */
r += Li (x2) - Li (x1);
return r;
}
{
double r, abserr;
size_t neval;
gsl_function f;
f.function = (double (*) (double, void *)) &integrand2;
f.params = &y;
gsl_integration_qng (&f, u1, u2, 0., 0.001, &r, &abserr, &neval);
return r;
}
}
static double
integrand3 (double p, double *param)
{
const double x1 = param[0];
const double x2 = param[1];
const double y = param[2];
return no_small_prime (x1 / p, x2 / p, y) / log(p);
}
double
no_small_prime_factor (const double x1, const double x2, const double y,
const double z1, const double z2)
{
double r, abserr, param[3];
size_t neval;
gsl_function f;
param[0] = x1;
param[1] = x2;
param[2] = y;
f.function = (double (*) (double, void *)) &integrand3;
f.params = ¶m;
gsl_integration_qng (&f, z1, z2, 0., 0.01, &r, &abserr, &neval);
return r;
}
#endif
#ifdef TESTDRIVE
int
main (int argc, char **argv)
{
double B1, B2, N, nr, r, m;
int S;
unsigned long p, i, pi;
primesieve_iterator pg[1];
primesieve_init (pg);
i = pi = 0;
for (p = primesieve_next_prime (pg); p <= PRIME_PI_MAX; p = primesieve_next_prime (pg))
{
for ( ; i < p; i++)
prime_pi[PRIME_PI_MAP(i)] = pi;
pi++;
}
for ( ; i < p; i++)
prime_pi[PRIME_PI_MAP(i)] = pi;
if (argc < 2)
{
printf ("Usage: rho <B1> <B2> <N> <nr> <S> [<r> <m>]\n\n\n");
printf (" Calculate the probability of ECM/P-1 finding a factor near N\n"
" with B1/B2, evaluating nr random distinct points in stage 2,\n"
" with a degree -S Dickson polynomial (if S < 0) or\n"
" S'th power as the Brent-Suyama function\n\n");
printf (" <B1> B1 limit.\n");
printf (" <B2> B2 limit.\n");
printf (" <N> N of similiar size, or number of bits in factor (if < 50).\n");
printf (" <nr> Number of random points evaluated in stage 2.\n");
printf (" <S> Degree of Brent-Suyama polynomial in stage 2.\n");
printf (" [<r> <m>] Limit P-1 to primes p == r (mod m).\n");
return 1;
}
if (strcmp (argv[1], "-Buchstab_Phi") == 0)
{
unsigned long x, y, r;
if (argc < 4)
{
printf ("-Buchstab_Phi needs x and y paramters\n");
exit (EXIT_FAILURE);
}
x = strtoul (argv[2], NULL, 10);
y = strtoul (argv[3], NULL, 10);
r = Buchstab_Phi (x, y);
printf ("Buchstab_Phi (%lu, %lu) = %lu\n", x, y, r);
exit (EXIT_SUCCESS);
}
else if (strcmp (argv[1], "-Buchstab_Psi") == 0)
{
unsigned long x, y, r;
if (argc < 4)
{
printf ("-Buchstab_Psi needs x and y paramters\n");
exit (EXIT_FAILURE);
}
x = strtoul (argv[2], NULL, 10);
y = strtoul (argv[3], NULL, 10);
r = Buchstab_Psi (x, y);
printf ("Buchstab_Psi (%lu, %lu) = %lu\n", x, y, r);
exit (EXIT_SUCCESS);
}
else if (strcmp (argv[1], "-nsp") == 0)
{
double x1, x2, y, r;
if (argc < 5)
{
printf ("-nsp needs x1, x2, and y paramters\n");
exit (EXIT_FAILURE);
}
x1 = atof (argv[2]);
x2 = atof (argv[3]);
y = atof (argv[4]);
r = no_small_prime (x1, x2, y);
printf ("no_small_prime(%f, %f, %f) = %f\n", x1, x2, y, r);
exit (EXIT_SUCCESS);
}
else if (strcmp (argv[1], "-nspf") == 0)
{
double x1, x2, y, z1, z2, r;
if (argc < 7)
{
printf ("-nspf needs x1, x2, y, z1, and z2 paramters\n");
exit (EXIT_FAILURE);
}
x1 = atof (argv[2]);
x2 = atof (argv[3]);
y = atof (argv[4]);
z1 = atof (argv[5]);
z2 = atof (argv[6]);
r = no_small_prime_factor (x1, x2, y, z1, z2);
printf ("no_small_prime(%f, %f, %f, %f, %f) = %f\n", x1, x2, y, z1, z2, r);
exit (EXIT_SUCCESS);
}
if (argc < 6)
{
printf ("Need 5 or 7 arguments: B1 B2 N nr S [r m]\n");
exit (EXIT_FAILURE);
}
B1 = atof (argv[1]);
B2 = atof (argv[2]);
N = atof (argv[3]);
nr = atof (argv[4]);
S = atoi (argv[5]);
r = 0; m = 1;
if (argc > 7)
{
r = atoi (argv[6]);
m = atoi (argv[7]);
}
rhoinit (256, 10);
if (N < 50.)
{
double sum;
sum = ecmprob(B1, B2, exp2 (N), nr, S);
sum += 4. * ecmprob(B1, B2, 3./2. * exp2 (N), nr, S);
sum += ecmprob(B1, B2, 2. * exp2 (N), nr, S);
sum *= 1./6.;
printf ("ECM: %.16f\n", sum);
sum = pm1prob_rm (B1, B2, exp2 (N), nr, S, r, m);
sum += 4. * pm1prob_rm (B1, B2, 3./2. * exp2 (N), nr, S, r, m);
sum += pm1prob_rm (B1, B2, 2. * exp2 (N), nr, S, r, m);
sum *= 1./6.;
printf ("P-1: %.16f\n", sum);
}
else
{
printf ("ECM: %.16f\n", ecmprob(B1, B2, N, nr, S));
printf ("P-1: %.16f\n", pm1prob_rm (B1, B2, N, nr, S, r, m));
}
rhoinit (0, 0);
return 0;
}
#endif
|