1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
|
/* sp.c - "small prime" functions that don't need to be inlined
Copyright 2005, 2006, 2007, 2008, 2009, 2010 Dave Newman, Jason Papadopoulos,
Alexander Kruppa, Paul Zimmermann.
The SP Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The SP Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the SP Library; see the file COPYING.LIB. If not, write to
the Free Software Foundation, Inc., 51 Franklin St, Fifth Floor, Boston,
MA 02110-1301, USA. */
#include <stdio.h> /* for stderr */
#include <stdlib.h>
#include "sp.h"
/* Test if m is a base "a" strong probable prime */
static int
sp_spp (sp_t a, sp_t m, sp_t d)
{
sp_t r, s, t, e;
/* since this routine is called only with m >= SP_MIN >= 2^30,
and a <= 61, we cannot have m = a */
ASSERT(a < m);
/* Set e * 2^s = m-1, e odd */
for (s = 0, e = m - 1; !(e & 1); s++, e >>= 1);
t = sp_pow (a, e, m, d);
if (t == 1)
return 1;
for (r = 0; r < s; r++)
{
if (t == m - 1)
return 1;
t = sp_sqr (t, m, d);
}
return 0;
}
/* Test if x is a prime, return 1 if it is. Note this only works on sp's,
i.e. we need the top bit of x set.
Assume x is odd and x >= SP_MIN.
*/
int
sp_prime (sp_t x)
{
sp_t d;
ASSERT (x & 1);
ASSERT (x >= SP_MIN);
sp_reciprocal (d, x);
if (SP_NUMB_BITS <= 32)
{
/* 32-bit primality test
* See http://primes.utm.edu/prove/prove2_3.html */
if (!sp_spp (2, x, d) || !sp_spp (7, x, d) || !sp_spp (61, x, d))
return 0;
}
else
{
ASSERT (SP_NUMB_BITS <= 64);
/* 64-bit primality test
* follows from results by Jaeschke, "On strong pseudoprimes to several
* bases" Math. Comp. 61 (1993) p916 */
if (!sp_spp (2, x, d) || !sp_spp (3, x, d) || !sp_spp (5, x, d)
|| !sp_spp (7, x, d) || !sp_spp (11, x, d) || !sp_spp (13, x, d)
|| !sp_spp (17, x, d) || ! sp_spp (19, x, d) || !sp_spp (23, x, d)
|| !sp_spp (29, x, d))
return 0;
}
return 1;
}
#define CACHE_LINE_SIZE 64
void *
sp_aligned_malloc (size_t len)
{
void *ptr, *aligned_ptr;
size_t addr;
ptr = malloc (len + CACHE_LINE_SIZE);
if (ptr == NULL)
return NULL;
addr = (size_t)ptr;
addr = CACHE_LINE_SIZE - (addr % CACHE_LINE_SIZE);
aligned_ptr = (void *)((char *)ptr + addr);
*( (void **)aligned_ptr - 1 ) = ptr;
return aligned_ptr;
}
void
sp_aligned_free (void *newptr)
{
void *ptr;
if (newptr == NULL)
return;
ptr = *( (void **)newptr - 1 );
free (ptr);
}
|