1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675
|
/* Polynomial multiplication using GMP's integer multiplication code
Copyright 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2012 Dave Newman,
Paul Zimmermann, Alexander Kruppa.
This file is part of the ECM Library.
The ECM Library is free software; you can redistribute it and/or modify
it under the terms of the GNU Lesser General Public License as published by
the Free Software Foundation; either version 3 of the License, or (at your
option) any later version.
The ECM Library is distributed in the hope that it will be useful, but
WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public
License for more details.
You should have received a copy of the GNU Lesser General Public License
along with the ECM Library; see the file COPYING.LIB. If not, see
http://www.gnu.org/licenses/ or write to the Free Software Foundation, Inc.,
51 Franklin St, Fifth Floor, Boston, MA 02110-1301, USA. */
#include <stdlib.h>
#include "ecm-gmp.h" /* for MPZ_REALLOC and MPN_COPY */
#include "ecm-impl.h"
#if defined(HAVE___GMPN_MULMOD_BNM1) && defined(HAVE___GMPN_MULMOD_BNM1_NEXT_SIZE)
#define FFT_WRAP /* use the wrap-around trick */
#endif
/* Copy at r+i*s the content of A[i*stride] for 0 <= i < l
Assume all A[i*stride] are non-negative, and their size is <= s.
*/
static void
pack (mp_ptr r, mpz_t *A, mp_size_t l, mp_size_t stride, mp_size_t s)
{
mp_size_t i, j, m;
for (i = 0, j = 0; i < l; i++, j += stride, r += s)
{
m = SIZ(A[j]);
ASSERT((0 <= m) && (m <= s));
if (m)
MPN_COPY (r, PTR(A[j]), m);
if (m < s)
MPN_ZERO (r + m, s - m);
}
}
/* put in R[i*stride] for 0 <= i < l the content of {t+i*s, s} */
void
unpack (mpz_t *R, mp_size_t stride, mp_ptr t, mp_size_t l, mp_size_t s)
{
mp_size_t i, j, size_tmp;
mp_ptr r_ptr;
for (i = 0, j = 0; i < l; i++, t += s, j += stride)
{
size_tmp = s;
MPN_NORMALIZE(t, size_tmp); /* compute the actual size */
r_ptr = MPZ_REALLOC (R[j], size_tmp);
if (size_tmp)
MPN_COPY (r_ptr, t, size_tmp);
SIZ(R[j]) = size_tmp;
}
}
/* R <- A * B where A = A[0] + A[1]*x + ... + A[n-1]*x^(n-1), idem for B */
void
list_mul_n_basecase (listz_t R, listz_t A, listz_t B, unsigned int n)
{
unsigned int i, j;
if (n == 1)
{
mpz_mul (R[0], A[0], B[0]);
return;
}
for (i = 0; i < n; i++)
for (j = 0; j < n; j++)
{
if (i == 0 || j == n - 1)
mpz_mul (R[i+j], A[i], B[j]);
else
mpz_addmul (R[i+j], A[i], B[j]);
}
}
static void
list_mul_n_kara2 (listz_t R, listz_t A, listz_t B)
{
mpz_add (R[0], A[0], A[1]);
mpz_add (R[2], B[0], B[1]);
mpz_mul (R[1], R[0], R[2]);
mpz_mul (R[0], A[0], B[0]);
mpz_mul (R[2], A[1], B[1]);
mpz_sub (R[1], R[1], R[0]);
mpz_sub (R[1], R[1], R[2]);
}
/* R[0..4] <- A[0..2] * B[0..2] in 7 multiplies */
static void
list_mul_n_kara3 (listz_t R, listz_t A, listz_t B, listz_t T)
{
mpz_add (T[0], A[0], A[2]);
mpz_add (R[0], B[0], B[2]);
mpz_mul (R[2], T[0], R[0]); /* (A0+A2)*(B0+B2) */
mpz_mul (R[3], T[0], B[1]); /* (A0+A2)*B1 */
mpz_mul (R[4], A[1], R[0]); /* A1*(B0+B2) */
mpz_add (R[3], R[3], R[4]); /* (A0+A2)*B1+A1*(B0+B2) */
list_mul_n_kara2 (T, A, B);
mpz_sub (R[2], R[2], T[0]); /* A0*A2+A2*B0+A2*B2 */
mpz_sub (R[3], R[3], T[1]); /* A2*B1+A1*B2 */
mpz_add (R[2], R[2], T[2]); /* A0*A2+A2*B0+A2*B2+A1*B1 */
mpz_swap (R[0], T[0]); /* A0*B0 */
mpz_swap (R[1], T[1]); /* A0*B1+A1*B0 */
mpz_mul (R[4], A[2], B[2]); /* A2*B2 */
mpz_sub (R[2], R[2], R[4]); /* A0*A2+A2*B0+A1*B1 */
}
/* Assume n >= 2. T is a scratch space of enough entries. */
static void
list_mul_n_karatsuba_aux (listz_t R, listz_t A, listz_t B, unsigned int n,
listz_t T)
{
unsigned int h, l;
if (n == 1)
{
list_mul_n_basecase (R, A, B, n);
return;
}
if (n == 2)
{
list_mul_n_kara2 (R, A, B);
return;
}
if (n == 3)
{
list_mul_n_kara3 (R, A, B, T);
return;
}
h = n / 2;
l = n - h;
list_add (R, A, A + l, h);
list_add (R + l, B, B + l, h);
if (h < l)
{
mpz_set (R[h], A[h]);
mpz_set (R[l + h], B[h]);
}
list_mul_n_karatsuba_aux (T, R, R + l, l, T + 2 * l - 1);
list_mul_n_karatsuba_aux (R, A, B, l, T + 2 * l - 1);
/* {R,2l-1} = Al * Bl */
list_mul_n_karatsuba_aux (R + 2 * l, A + l, B + l, h, T + 2 * l - 1);
/* {R+2l,2h-1} = Ah * Bh */
/* T will contain Al*Bh+Ah*Bl, it thus suffices to compute its low n-1
coefficients */
list_sub (T, T, R, n - 1);
list_sub (T, T, R + 2 * l, 2 * h - 1);
mpz_set_ui (R[2 * l - 1], 0);
list_add (R + l, R + l, T, n - 1);
}
static unsigned int
list_mul_n_mem (unsigned int n)
{
if (n == 1)
return 0;
else
{
unsigned int k = (n + 1) / 2;
return 2 * k - 1 + list_mul_n_mem (k);
}
}
void
list_mul_n_karatsuba (listz_t R, listz_t A, listz_t B, unsigned int n)
{
listz_t T;
unsigned int s;
s = list_mul_n_mem (n);
T = init_list (s);
list_mul_n_karatsuba_aux (R, A, B, n, T);
clear_list (T, s);
}
/* Classical one-point Kronecker-Schoenhage substitution.
Notes:
- this code aligns the coeffs at limb boundaries - if instead we aligned
at byte boundaries then we could save up to 3*n bytes,
but tests have shown this doesn't give any significant speed increase,
even for large degree polynomials.
- this code requires that all coefficients A[] and B[] are nonnegative. */
void
list_mul_n_KS1 (listz_t R, listz_t A, listz_t B, unsigned int l)
{
unsigned long i;
mp_size_t s, t = 0, size_t0;
mp_ptr t0_ptr, t1_ptr, t2_ptr;
/* compute the largest bit-size t of the A[i] and B[i] */
for (i = 0; i < l; i++)
{
if ((s = mpz_sizeinbase (A[i], 2)) > t)
t = s;
if ((s = mpz_sizeinbase (B[i], 2)) > t)
t = s;
}
/* For n > 0, s = sizeinbase (n, 2) ==> n < 2^s.
For n = 0, s = sizeinbase (n, 2) = 1 ==> n < 2^s.
Hence all A[i], B[i] < 2^t */
/* Each coeff of A(x)*B(x) < l * 2^(2*t), so max number of bits in a
coeff of the product will be 2 * t + ceil(log_2(l)) */
s = 2 * t;
for (i = l; i > 1; s++, i = (i + 1) >> 1);
/* work out the corresponding number of limbs */
s = 1 + (s - 1) / GMP_NUMB_BITS;
size_t0 = s * l;
/* allocate a single buffer to save malloc/MPN_ZERO/free calls */
t0_ptr = (mp_ptr) malloc (4 * size_t0 * sizeof (mp_limb_t));
if (t0_ptr == NULL)
{
outputf (OUTPUT_ERROR, "Out of memory in list_mult_n()\n");
exit (1);
}
t1_ptr = t0_ptr + size_t0;
t2_ptr = t1_ptr + size_t0;
pack (t0_ptr, A, l, 1, s);
pack (t1_ptr, B, l, 1, s);
mpn_mul_n (t2_ptr, t0_ptr, t1_ptr, size_t0);
unpack (R, 1, t2_ptr, 2 * l - 1, s);
free (t0_ptr);
}
/* Two-point Kronecker substitition.
Reference: Algorithm 2 from "Faster polynomial multiplication via multipoint
Kronecker substitution", David Harvey, Journal of Symbolic Computation,
number 44 (2009), pages 1502-1510.
Assume n >= 2.
Notes:
- this code aligns the coeffs at limb boundaries - if instead we aligned
at byte boundaries then we could save up to 3*n bytes,
but tests have shown this doesn't give any significant speed increase,
even for large degree polynomials.
- this code requires that all coefficients A[] and B[] are nonnegative.
*/
void
list_mul_n_KS2 (listz_t R, listz_t A, listz_t B, unsigned int n)
{
unsigned long i;
mp_size_t s, s2, t = 0, l, h, ns2;
mp_ptr tmp, A0, A1, B0, B1, C0, C1;
int sA, sB;
ASSERT_ALWAYS (n >= 2);
/* compute the largest bit-size t of the A[i] and B[i] */
for (i = 0; i < n; i++)
{
if ((s = mpz_sizeinbase (A[i], 2)) > t)
t = s;
if ((s = mpz_sizeinbase (B[i], 2)) > t)
t = s;
}
/* For n > 0, s = sizeinbase (n, 2) ==> n < 2^s.
For n = 0, s = sizeinbase (n, 2) = 1 ==> n < 2^s.
Hence all A[i], B[i] < 2^t */
/* Each coeff of A(x)*B(x) < n * 2^(2*t), so max number of bits in a
coeff of the product will be 2 * t + ceil(log_2(n)) */
s = 2 * t;
for (i = n; i > 1; s++, i = (i + 1) >> 1);
/* work out the corresponding number of limbs */
s = 1 + (s - 1) / GMP_NUMB_BITS;
/* ensure s is even */
s = s + (s & 1);
s2 = s >> 1;
ns2 = n * s2;
l = n / 2;
h = n - l;
/* allocate a single buffer to save malloc/MPN_ZERO/free calls */
tmp = (mp_ptr) malloc (8 * ns2 * sizeof (mp_limb_t));
if (tmp == NULL)
{
outputf (OUTPUT_ERROR, "Out of memory in list_mult_n()\n");
exit (1);
}
A0 = tmp;
A1 = A0 + ns2;
B0 = A1 + ns2;
B1 = B0 + ns2;
C0 = B1 + ns2;
C1 = C0 + 2 * ns2;
pack (A0, A, h, 2, s); /* A0 = Aeven(S) where S = 2^(s*GMP_NUMB_BITS) */
/* A0 has in fact only n * s2 significant limbs:
if n=2h, h*s = n*s2
if n=2h-1, the last chunk from A0 has at most s2 limbs */
MPN_ZERO(B0, s2);
pack (B0 + s2, A + 1, l, 2, s);
/* for the same reason as above, we have at most l*s-s2 significant limbs
at B0+s2, thus at most l*s <= n*s2 at B0 */
if ((sA = mpn_cmp (A0, B0, ns2)) >= 0)
mpn_sub_n (A1, A0, B0, ns2);
else
mpn_sub_n (A1, B0, A0, ns2);
mpn_add_n (A0, A0, B0, ns2);
/* now A0 is X+ with the notations of Algorithm, A1 is sA*X- */
pack (B0, B, h, 2, s);
MPN_ZERO(C0, s2);
pack (C0 + s2, B + 1, l, 2, s);
if ((sB = mpn_cmp (B0, C0, ns2)) >= 0)
mpn_sub_n (B1, B0, C0, ns2);
else
mpn_sub_n (B1, C0, B0, ns2);
mpn_add_n (B0, B0, C0, ns2);
/* B0 is Y+, B1 is sB*Y- with the notations of Algorithm 2 */
mpn_mul_n (C0, A0, B0, ns2); /* C0 is Z+ = X+ * Y+ */
mpn_mul_n (C1, A1, B1, ns2); /* C1 is sA * sB * Z- */
if (sA * sB >= 0)
{
mpn_add_n (A0, C0, C1, 2 * ns2);
mpn_sub_n (B0, C0, C1, 2 * ns2);
}
else
{
mpn_sub_n (A0, C0, C1, 2 * ns2);
mpn_add_n (B0, C0, C1, 2 * ns2);
}
mpn_rshift (A0, A0, 4 * ns2, 1); /* global division by 2 */
/* If A[] and B[] have n coefficients, the product has 2n-1 coefficients.
The even part has n coefficients and the odd part n-1 coefficients */
unpack (R, 2, A0, n, s);
unpack (R + 1, 2, B0 + s2, n - 1, s);
free (tmp);
}
/* Puts in R[0..2n-2] the product of A[0..n-1] and B[0..n-1], seen as
polynomials.
*/
void
list_mult_n (listz_t R, listz_t A, listz_t B, unsigned int n)
{
int T[TUNE_LIST_MUL_N_MAX_SIZE] = LIST_MUL_TABLE, best;
/* See tune_list_mul_n() in tune.c:
0 : list_mul_n_basecase
2 : list_mul_n_KS1
3 : list_mul_n_KS2 */
best = (n < TUNE_LIST_MUL_N_MAX_SIZE) ? T[n] : 3;
if (best == 0)
list_mul_n_basecase (R, A, B, n);
else if (best == 1)
list_mul_n_karatsuba (R, A, B, n);
else if (best == 2)
list_mul_n_KS1 (R, A, B, n);
else
list_mul_n_KS2 (R, A, B, n);
}
/* Given a[0..m] and c[0..l], puts in b[0..n] the coefficients
of degree m to n+m of rev(a)*c, i.e.
b[0] = a[0]*c[0] + ... + a[i]*c[i] with i = min(m, l)
...
b[k] = a[0]*c[k] + ... + a[i]*c[i+k] with i = min(m, l-k)
...
b[n] = a[0]*c[n] + ... + a[i]*c[i+n] with i = min(m, l-n) [=l-n].
If rev=0, consider a instead of rev(a).
Assumes n <= l.
Return non-zero if an error occurred.
low(b) is the coefficients of degree 0 to m-1 of a*c (or rev(a)*c)
mid(b) is the coefficients of degree m to m+n of a*c
high(b) is the coefficients of degree m+n+1 to m+l+1 of a*c
*/
int
TMulKS (listz_t b, unsigned int n, listz_t a, unsigned int m,
listz_t c, unsigned int l, mpz_t modulus, int rev)
{
unsigned long i, s = 0, t;
mp_ptr ap, bp, cp;
mp_size_t an, bn, cn;
int ret = 0; /* default return value */
#ifdef DEBUG
long st = cputime ();
fprintf (ECM_STDOUT, "n=%u m=%u l=%u bits=%u n*bits=%u: ", n, m, l,
mpz_sizeinbase (modulus, 2), n * mpz_sizeinbase (modulus, 2));
#endif
ASSERT (n <= l); /* otherwise the upper coefficients of b are 0 */
if (l > n + m)
l = n + m; /* otherwise, c has too many coeffs */
/* make coefficients a[] and c[] non-negative and compute max #bits */
for (i = 0; i <= m; i++)
{
if (mpz_sgn (a[i]) < 0)
mpz_mod (a[i], a[i], modulus);
if ((t = mpz_sizeinbase (a[i], 2)) > s)
s = t;
}
for (i = 0; i <= l; i++)
{
if (mpz_sgn (c[i]) < 0)
mpz_mod (c[i], c[i], modulus);
if ((t = mpz_sizeinbase (c[i], 2)) > s)
s = t;
}
#ifdef FFT_WRAP
s ++; /* need one extra bit to prevent carry of low(b) + high(b) */
#endif
/* max coeff has 2*s+ceil(log2(min(m+1,l+1))) bits,
i.e. 2*s + 1 + floor(log2(min(m,l))) */
for (s = 2 * s, i = (m < l) ? m : l; i; s++, i >>= 1);
/* corresponding number of limbs */
s = 1 + (s - 1) / GMP_NUMB_BITS;
an = (m + 1) * s;
cn = (l + 1) * s;
bn = an + cn;
/* a[0..m] needs (m+1) * s limbs */
ap = (mp_ptr) malloc (an * sizeof (mp_limb_t));
if (ap == NULL)
{
ret = 1;
goto TMulKS_end;
}
cp = (mp_ptr) malloc (cn * sizeof (mp_limb_t));
if (cp == NULL)
{
ret = 1;
goto TMulKS_free_ap;
}
MPN_ZERO (ap, an);
MPN_ZERO (cp, cn);
/* a is reverted */
for (i = 0; i <= m; i++)
if (SIZ(a[i]))
MPN_COPY (ap + ((rev) ? (m - i) : i) * s, PTR(a[i]), SIZ(a[i]));
for (i = 0; i <= l; i++)
if (SIZ(c[i]))
MPN_COPY (cp + i * s, PTR(c[i]), SIZ(c[i]));
#ifdef FFT_WRAP
/* the product rev(a) * c has m+l+1 coefficients.
We throw away the first m and the last l-n <= m.
If we compute mod (m+n+1) * s limbs, we are ok */
bn = mpn_mulmod_bnm1_next_size ((m + n + 1) * s);
bp = (mp_ptr) malloc (bn * sizeof (mp_limb_t));
if (bp == NULL)
{
ret = 1;
goto TMulKS_free_cp;
}
{
mp_ptr tp;
tp = (mp_ptr) malloc ((2 * bn + 4) * sizeof (mp_limb_t));
if (tp == NULL)
{
ret = 1;
goto TMulKS_free_cp;
}
/* mpn_mulmod_bnm1 requires that the first operand is larger */
if (an >= cn)
mpn_mulmod_bnm1 (bp, bn, ap, an, cp, cn, tp);
else
mpn_mulmod_bnm1 (bp, bn, cp, cn, ap, an, tp);
free (tp);
}
#else /* FFT_WRAP is not defined */
bp = (mp_ptr) malloc (bn * sizeof (mp_limb_t));
if (bp == NULL)
{
ret = 1;
goto TMulKS_free_cp;
}
if (an >= cn)
mpn_mul (bp, ap, an, cp, cn);
else
mpn_mul (bp, cp, cn, ap, an);
#endif
/* recover coefficients of degree m to n+m of product in b[0..n] */
bp += m * s;
for (i = 0; i <= n; i++)
{
t = s;
MPN_NORMALIZE(bp, t);
MPZ_REALLOC (b[i], (mp_size_t) t);
if (t)
MPN_COPY (PTR(b[i]), bp, t);
SIZ(b[i]) = t;
bp += s;
}
bp -= (m + n + 1) * s;
free (bp);
TMulKS_free_cp:
free (cp);
TMulKS_free_ap:
free (ap);
#ifdef DEBUG
fprintf (ECM_STDOUT, "%ldms\n", elltime (st, cputime ()));
#endif
TMulKS_end:
return ret;
}
unsigned int
ks_wrapmul_m (unsigned int m0, unsigned int k, mpz_t n)
{
#ifdef FFT_WRAP
mp_size_t t, s;
unsigned long i, m;
t = mpz_sizeinbase (n, 2);
s = t * 2 + 1;
for (i = k - 1; i; s++, i >>= 1);
s = 1 + (s - 1) / GMP_NUMB_BITS;
i = mpn_mulmod_bnm1_next_size (m0 * s);
while (i % s)
i = mpn_mulmod_bnm1_next_size (i + 1);
m = i / s;
return m;
#else
return ~ (unsigned int) 0;
#endif
}
/* multiply in R[] A[0]+A[1]*x+...+A[k-1]*x^(k-1)
by B[0]+B[1]*x+...+B[l-1]*x^(l-1) modulo n,
wrapping around coefficients of the product up from degree m >= m0.
Assumes k >= l.
R is assumed to have 2*m0-3+list_mul_mem(m0-1) allocated cells.
Return m (or 0 if an error occurred).
*/
unsigned int
ks_wrapmul (listz_t R, unsigned int m0,
listz_t A, unsigned int k,
listz_t B, unsigned int l,
mpz_t n)
{
#ifndef FFT_WRAP
ASSERT_ALWAYS(0); /* ks_wrapmul should not be called in that case */
return 0;
#else
unsigned long i, m, t;
mp_size_t s, size_t0, size_t1, size_tmp;
mp_ptr t0_ptr, t1_ptr, t2_ptr, r_ptr, tp;
ASSERT(k >= l);
t = mpz_sizeinbase (n, 2);
for (i = 0; i < k; i++)
if (mpz_sgn (A[i]) < 0 || mpz_sizeinbase (A[i], 2) > t)
mpz_mod (A[i], A[i], n);
for (i = 0; i < l; i++)
if (mpz_sgn (B[i]) < 0 || mpz_sizeinbase (B[i], 2) > t)
mpz_mod (B[i], B[i], n);
s = t * 2 + 1; /* one extra sign bit */
for (i = k - 1; i; s++, i >>= 1);
s = 1 + (s - 1) / GMP_NUMB_BITS;
size_t0 = s * k;
size_t1 = s * l;
/* allocate one double-buffer to save malloc/MPN_ZERO/free calls */
t0_ptr = (mp_ptr) malloc (size_t0 * sizeof (mp_limb_t));
if (t0_ptr == NULL)
return 0;
t1_ptr = (mp_ptr) malloc (size_t1 * sizeof (mp_limb_t));
if (t1_ptr == NULL)
{
free (t0_ptr);
return 0;
}
MPN_ZERO (t0_ptr, size_t0);
MPN_ZERO (t1_ptr, size_t1);
for (i = 0; i < k; i++)
if (SIZ(A[i]))
MPN_COPY (t0_ptr + i * s, PTR(A[i]), SIZ(A[i]));
for (i = 0; i < l; i++)
if (SIZ(B[i]))
MPN_COPY (t1_ptr + i * s, PTR(B[i]), SIZ(B[i]));
i = mpn_mulmod_bnm1_next_size (m0 * s);
/* the following loop ensures we don't cut in the middle of a
coefficient */
while (i % s)
i = mpn_mulmod_bnm1_next_size (i + 1);
ASSERT(i % s == 0);
m = i / s;
ASSERT(m <= 2 * m0 - 3 + list_mul_mem (m0 - 1));
t2_ptr = (mp_ptr) malloc ((i + 1) * sizeof (mp_limb_t));
if (t2_ptr == NULL)
{
free (t0_ptr);
free (t1_ptr);
return 0;
}
{
mp_ptr tp = malloc ((2 * i + 4) * sizeof (mp_limb_t));
if (tp == NULL)
{
free (t0_ptr);
free (t1_ptr);
return 0;
}
mpn_mulmod_bnm1 (t2_ptr, i, t0_ptr, size_t0, t1_ptr, size_t1, tp);
if ((mp_size_t) i > size_t0 + size_t1)
MPN_ZERO(t2_ptr + size_t0 + size_t1, i - (size_t0 + size_t1));
free (tp);
}
for (t = 0, tp = t2_ptr; t < m; t++, tp += s)
{
size_tmp = s;
MPN_NORMALIZE(tp, size_tmp);
r_ptr = MPZ_REALLOC (R[t], size_tmp);
if (size_tmp)
MPN_COPY (r_ptr, tp, size_tmp);
SIZ(R[t]) = size_tmp;
}
free (t0_ptr);
free (t1_ptr);
free (t2_ptr);
return m;
#endif /* FFT_WRAP */
}
|